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Abstract

Oat (Avena sativa L.) seed is a rich resource of beneficial lipids, soluble fiber, protein, and antioxidants, and is considered a healthful food
for humans. Little is known regarding the genetic controllers of variation for these compounds in oat seed. We characterized natural
variation in the mature seed metabolome using untargeted metabolomics on 367 diverse lines and leveraged this information to improve
prediction for seed quality traits. We used a latent factor approach to define unobserved variables that may drive covariance among
metabolites. One hundred latent factors were identified, of which 21% were enriched for compounds associated with lipid metabolism.
Through a combination of whole-genome regression and association mapping, we show that latent factors that generate covariance for
many metabolites tend to have a complex genetic architecture. Nonetheless, we recovered significant associations for 23% of the latent
factors. These associations were used to inform a multi-kernel genomic prediction model, which was used to predict seed lipid and protein
traits in two independent studies. Predictions for 8 of the 12 traits were significantly improved compared to genomic best linear unbiased
prediction when this prediction model was informed using associations from lipid-enriched factors. This study provides new insights into
variation in the oat seed metabolome and provides genomic resources for breeders to improve selection for health-promoting seed quality
traits. More broadly, we outline an approach to distill high-dimensional “omics” data to a set of biologically meaningful variables and trans-
late inferences on these data into improved breeding decisions.
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Introduction
Oat (Avena sativa L.) is cultivated throughout the temperate
regions of the world for both human and animal consumption
(Berzonsky and Ohm, 2000; Zhou et al. 2019). The oat seed con-
tains a diverse array of compounds that are beneficial for human
health and nutrition (Gulvady et al. 2013). It is widely considered
a healthy food due to its high-soluble fiber content, which is
unique among major cereals and has been shown to improve car-
diovascular health, as well as help manage blood glucose levels
(Gulvady et al. 2013; Kale et al. 2013). Oat is also a good source of
protein (12.4–24.5% of seed weight), oil (3–11%), and a rich source
of vitamins and minerals (Frey and Holland 1999; Gulvady et al.
2013). The oils found in the oat seed are primarily triglycerides,
with palmitic, oleic, and linoleic acids being the primary fatty
acids (Youngs 1978). Due to many of these qualities, oat has been
used more recently to produce nondairy milk and yogurt prod-
ucts. In addition to the benefits from direct consumption,

colloidal oatmeal and oat extracts have been used extensively as
a topical medicine to treat skin dermatitis and reduce inflamma-
tion (Kurtz and Wallo 2007; Cerio et al. 2010). These benefits have
been attributed to avenanthramides, flavonoids, tocopherols,
polysaccharides, and lipids. Thus, the oat seed is a rich source of
diverse compounds that have multifaceted effects on human
health. To improve specific biochemical properties of oat,
breeders must be provided with a suite of tools that allow these
compounds to be quantified accurately at low cost and genomic
resources that improve selection for specific seed qualities.

Advances in biochemistry have provided the research commu-
nity with a breadth of tools to query the metabolome and quan-
tify known and unknown compounds (Dunn and Ellis 2005).
Untargeted metabolomics can quantify 100–1000s of metabolites
in a sample, thus health-promoting and quality-related metabo-
lites, and their intermediate or related compounds can be
assessed with relative ease (Dunn et al. 2013; Christ et al. 2018).
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These high-dimensional data can be leveraged to address basic
biological questions regarding biochemical pathways that are
represented in the data, as well as assess natural variation for
these pathways. The effectiveness of these methods to character-
ize natural variation in the metabolome has been highlighted by
several studies (Chan et al. 2010; Caspi et al. 2014; Matsuda et al.
2015; Slenter et al. 2018; Wu et al. 2018). Moreover, these data
have been used as predictors, often alongside genomic data, to
improve prediction for complex traits (Riedelsheimer et al. 2012;
Guo et al. 2016; Xu et al. 2016).

Parsing these data to understand the biology of the seed
metabolome can be challenging. Numerous databases are avail-
able that describe primary and secondary metabolic pathways,
and are curated using information both across and within species
(Kanehisa, 2002; Wishart et al. 2020). Metabolites can be mapped
to these pathways to determine which pathways and their prod-
ucts are enriched in a given set of samples. While these
approaches provide greater confidence over unsupervised, data-
driven approaches, in many cases only a fraction of the com-
pounds quantified via untargeted metabolomics can be mapped
to these pathways (Schrimpe-Rutledge et al. 2016; Cui et al. 2018).
This is especially problematic for under-characterized species or
pathways. Unsupervised, data-driven approaches provide an at-
tractive alternative that utilizes the data more completely. These
approaches include coexpression-based analyses and factor ana-
lytic models. While coexpression-based analyses have been used
extensively to characterize high-dimensional “omics” data, these
approaches often require users to select several parameters that
influence outcomes and may limit reproducibility (Langfelder
and Horvath, 2008; DiLeo et al. 2011). Factor analytic models use a
linear model to identify groups of strongly correlated metabolites.
The underlying rationale for these approaches is that covariance
among metabolites is driven by some unobserved (i.e., latent) un-
derlying variable(s). With this approach, the matrix of metabo-
lites is decomposed into a lower-dimensional linear combination
of factor loadings, which describe how each latent factor contrib-
utes to each compound, and a set of factor scores that ascribe a
phenotypic value for all individuals for a given latent factor.
Thus, these frameworks have advantages from both biological
and statistical perspectives. While in some respects factor ana-
lytic models achieve the same goal as others, such as principal
component analysis (PCA)—providing a reduced rank representa-
tion of the data—the defining feature of factor analytic models is
that latent factors are constructed to preserve correlation among
groups of related metabolites. In PCA, new constructs are defined
that preserve variance in the observed variables. Constructs from
factor analytic models can provide insight into biological pro-
cesses driving covariation between phenotypes. Moreover, the
lower-dimensional set of factor-scores can be treated as any
other phenotype and will reduce the multiple testing burden of-
ten associated with high-dimensional “omics” datasets.

Improving health promoting or quality-related compounds
requires decomposing phenotypic variation within the metabo-
lome into genetic and nongenetic components, and utilizing
these outcomes to inform selection decisions for quality-related
phenotypes. Conventional linkage analysis or association map-
ping approaches have proven to be powerful approaches to iden-
tify genetic variants associated with variation in the metabolome
(Rowe et al. 2008; Chan et al. 2010; Eckert et al. 2012; Wen et al.
2014; Matsuda et al. 2015; Xu et al. 2017). However, a much greater
challenge is to translate genetic signal for health-promoting com-
pounds and related metabolites to improve prediction and selec-
tion of new crop germplasm.

A number of studies have extended the conventional frame-

works used for genomic prediction to accommodate prior biologi-

cal information regarding genetic marker effects (Speed and

Balding 2014; Edwards et al. 2016; MacLeod et al. 2016; Turner-

Hissong et al. 2019). Although these approaches differ in how

these data are treated, the motivation is similar for all—specifi-

cally, effects for variants that are more likely to be causative

should be drawn from a different distribution than those lacking

evidence for causality. Thus, prediction should be improved

when effect sizes differ between genetic marker classes. For in-

stance, the approaches described by Speed and Balding (2014)

and Edwards et al. (2016) are essentially an extension of the geno-

mic best linear unbiased prediction (gBLUP) framework, in which

genomic markers are partitioned and are used to construct sepa-

rate genomic relationship matrices for each random genetic ef-

fect. The framework described by MacLeod et al. (2016) extends

the Bayesian prediction framework, BayesR, and uses biological

information to partition markers into classes (Erbe et al. 2012).

Marker effects, rather than genomic values, are sampled from

each distribution. In the context of the current study, if we know

what metabolites are related to quality traits and have identified

variants associated with these metabolites, genomic markers can

be partitioned to define biologically informed marker-sets that

should be enriched for causal loci and improve prediction of ge-

nomic values.
We characterized the seed metabolomes of 375 diverse oat

lines and sought to identify loci that potentially influence (co)-

variation among many metabolites. Specifically, we sought to an-

swer: (1) What pathways or metabolite classes are enriched in

the seed metabolome? (2) What are the genetic controllers of the

metabolome? and (3) Can these data be leveraged to improve ge-

nomic prediction for seed quality traits? To this end, we assayed

the seed metabolome using untargeted LC-MS and GC-MS and

used the empirical factor analysis approach described by Wang

and Stephens (2018) to identify latent factors that generate co-

variance among many metabolites. We performed GWAS using

this reduced set of latent phenotypes, and used these outcomes

to inform a multi-kernel genomic prediction model for prediction

of seed quality traits in two independent studies. We extract

meaningful basic biological insights from “omics” data with lim-

ited annotations, and translate these outcomes to improve pre-

diction for agriculturally important traits. This study provides a

necessary foundation to characterize the oat seed metabolome

and develop novel genomic resources for oat breeders to improve

seed qualities.

Materials and methods
Plant materials and growth conditions
The oat diversity panel consists of 375 accessions derived from

breeding programs in North America and Europe. In 2018, the di-

versity panel was grown in an augmented block field design in

Ithaca, NY. The design consisted of 368 unreplicated entries allo-

cated randomly to 18 blocks with 21–23 plots per block. One pri-

mary check, “Corral,” was included in each of the blocks, while

one of six secondary checks were randomly allocated to each

block. These secondary checks were replicated four times, while

the primary check was replicated 19 times (one block had two

“Corral” plots). Three-hundred thirty five lines with genotypic

data were used for downstream genetic analyses on latent fac-

tors.
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Latent factor analysis
A description of sample preparation, metabolite quantification,

and data preprocessing is provided in the Supplementary

Materials. Latent factor analysis was performed using dereg-

ressed best linear unbiased predictions for 367 entries (one entry

was deemed an outlier and was removed from subsequent analy-

ses) and 1668 metabolites. Latent factor analysis seeks to identify

a set of k latent factors that give rise to the observed covariance

among a set p of empirical variables. This relationship is given by:

Y ¼ FCþ s; (1)

where Y is a centered and standardized n� p matrix of observa-

tions for p metabolites and n individuals; F is an n� k matrix of

factor scores; C is a k� p matrix of loadings; and s is an n� p ma-

trix of specific effects. The (co)variance matrix V of observations

Y is decomposed into common covariance and specific covari-

ance:

V ¼ C0CþW: (2)

All matrices are defined as above, and W is a p� p diagonal

matrix of specific variances.
A recent framework described by Wang and Stephens (2018)

uses an empirical Bayes approach to learn appropriate priors

from the data given a family of densities. This approach,

Empirical Bayes Matrix Factorization (EBMF), can tailor the spar-

sity for factor loadings and scores based on what best fits the

data and was implemented using the flashr package in R (https://

github.com/stephenslab/flashr/tree/master/R). Three classes of

models were fit that differed in families of densities used to fit

the data: Laplace, point-normal, and adaptive-shrinkage. A com-

bination of the “Greedy” search algorithm and backfitting was

used to define the model.
We evaluated the classes of models for goodness-of-fit using

percent variance explained (PVE) by the common factors, as well

as predictive ability using threefold orthogonal cross validation

(3-OCV) (Owen and Wang 2016). PVE was defined as:

PVE ¼ trðC0CÞ
trðC0CþWÞ � 100

(3)

with tr indicating trace of the given matrix and all other matrices

defined as above. 3-OCV is similar to classical CV, but ensures

that no rows and columns of the testing data (Ytest) have all miss-

ing data. The model above was fitted for the training set data and

predicted values for the testing set were calculated via

Ŷ test ¼ FtestCtest. The accuracy of each model was evaluated using

the root mean square error (RMSE) and the correlation between

predicted and observed values for observations in the testing set

for each fold. Ten independent resamplings were performed. The

metrics were averaged over folds, and the “best” model was se-

lected based on the results across the 10 repeats.

Enrichment analysis for latent factors
We used the ClassyFire taxonomic hierarchies for 562 metabo-

lites to test for functional enrichment for each factor (Feunang

et al. 2016). ClassyFire uses a hierarchy of five levels to describe

chemical compounds. At each level we calculated the percentage

of variance explained (PVEkc) for factor k by functional class c.

This is given below:

PVEkc ¼
trðkkck

0
kcÞ

trðkkk0kÞ
; (4)

where kk is a vector of loadings for a given factor k, and kkc is a
vector of loadings of factor k for compounds in class c. Our null
hypothesis is that the variance captured by compounds in a given
class will be equivalent to that explained by a random set of com-
pounds of equal size to that class. To test this, we generated an
empirical null distribution for each functional class and factor.
For each class and factor, we picked a random set of compounds
with a size equivalent to the class by sampling the loadings of
1668 metabolites without replacement and computed PVE. This
process was repeated 1000 times for each combination of func-
tional class and factor. For each class-factor combination, we
compared observed PVE with the empirical null distribution for
that given combination and calculated P-values. q-values were
calculated across all factors and classes following Storey (2002).
Functional classes with fewer than five compounds were ex-
cluded from analyses to ensure that results were not biased to
small classes with one or two compounds with very high load-
ings.

Assessing the genetic architecture of latent
factors
Genome-wide association study
To identify loci associated with latent factors, the following linear
mixed model was fit to factor scores for each latent factor (k):

y ¼ Xbþwiai þ Zuþ e; (5)

where y is a vector of factor scores; X is a matrix of the first two
PCs and b is the corresponding vector of effects; wi is a vector of
allele dosages for marker i and ai is the corresponding marker ef-
fect; and u is a vector of polygenic effects. The first two PCs
explained about 13% of the genomic relatedness among lines. We
assume u � Nð0;Gr2

uÞ and e � Nð0; Ir2
e Þ, where G is a genomic re-

lationship matrix calculated following the second definition pro-
vided by VanRaden (2008). These models were fitted using the
rrBLUP package in R (Endelman, 2011). GWAS was performed us-
ing 62,049 SNP markers with a minor allele frequency >0.05 and
335 individuals with marker data and factor scores. Marker phys-
ical positions are based on the Avena sativa—OT3098 v1, PepsiCo
genome assembly (https://wheat.pw.usda.gov/GG3/graingenes_
downloads/oat-ot3098-pepsico).

We used the approach described by Li and Ji (2005) to account
for multiple tests performed both within and across factors. We
computed the number of effective tests (Meff) by performing ei-
genvalue decomposition on the correlation matrix for 62,049
markers. This provides an estimate of the number of tests per-
formed within each factor. Next, we multiplied this value by the
total number of factors. The test criteria was then adjusted using
Meff with the Sidak correction below (�Sidák, 1967).

ap ¼ 1� ð1� aeÞ1=ðMeff�100Þ (6)

This provided a genome-wide significance (ap) value of 2:57�
10�7 at ae ¼ 0:1 with Meff ¼ 4; 097. The proportion of variance
explained by all significant GWAS hits for each factor (R2

GWAS) was
obtained by comparing two models: the full model included all
significant markers and the first 10 principal components of the
genomic relationship matrix, and the reduced model included
only the first 10 principal components. All terms were considered
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fixed. R2
GWAS was calculated as the difference in the residual sum

of squares of the reduced and full models.

Estimating polygenicity with Bayes Cp

To estimate polygenicity of each factor, we used Bayes Cp (Habier

et al. 2011). Bayes Cp is a Bayesian whole-genome regression ap-

proach that can be used to estimate the proportion of markers

with a nonzero effect on the phenotype. Bayes Cp assumes that

marker effects are drawn from a mixture distribution. Effects

drawn from a distribution with a point mass at 0 with a probabil-

ity p and a Gaussian distribution with probability ð1� pÞ. The lin-

ear model is:

y ¼ lþ
XT

t¼1

wtat þ e

atjp; r2
t ¼

0 with prob: p
�Nð0; r2

t Þwith prob: ð1� pÞ

� (7)

wt is a vector of marker genotypes for marker t and at is the corre-

sponding effect. The above model was fitted using the JWAS

package in Julia using factor scores and 62,049 markers (Cheng

et al. 2018). We used 200,000 iterations and discarded the first

100,000 iterations. Posterior means of 1� p were used as esti-

mates of polygenicity.

Genomic prediction of seed quality traits
Two studies were used to determine whether associations from

factor score-based GWAS could improve genomic prediction ac-

curacies. The first consisted of fatty acid measurements for 500

lines, of which 338 had corresponding genotypic data consisting

of 61,900 markers. These lines were evaluated at two locations in

New York in 2014 (Carlson et al. 2019). The second consisted of six

trials that evaluated protein and lipid content using near-

infrared spectroscopy for 210 lines, of which 12 overlapped with

the lines used for factor analysis. For this study, 58,293 markers

were used for prediction. Supplementary Table S2 lists the trials

used for genomic prediction and links to access these data.
A multi-kernel BLUP model was used to predict seed pheno-

types across trials. Additive genetic effects were predicted using

two kernels. The first is computed using markers that were iden-

tified through factor score-based GWAS and is referred to as the

biologically informed kernel, while the second was computed us-

ing all other markers. This model is given by:

y ¼ lþ Zuuin þ Zuuout þ Zesþ e; (8)

where y is a vector of phenotypes; Zu is an n� q incidence matrix

that assigns the q genomic values to n observations; uin and uout

are genomic values predicted from biologically informed or

noninformed kernels, respectively; Ze is an n� e incidence

matrix that assigns observations to trials and s are

the corresponding effects. Moreover, we assume

uin � Nð0; r2
uin

KinÞ; uout � Nð0; r2
uout

KoutÞ, and s � Nð0; r2
s Z0eZeÞ.

Where Kin and Kout are biologically informed and noninformed

kernels genomic relationship matrices, respectively, and are

computed according to VanRaden (2008). We considered two

marker sets to compute these matrices: markers associated with

any latent factor, and markers that were associated with latent

factors showing enrichment for lipid and lipid-like molecules at

the superclass level (q< 0.05). Markers that were in weak linkage

disequilibrium (LD) (r2 > 0:25) with GWAS hits were included in

the biologically informed kernel. LD was computed separately for
each study.

The multi-kernel approaches were compared to Genomic
BLUP (gBLUP) and BayesB (Meuwissen et al. 2001). The gBLUP
model is similar to the multi-kernel model; however, the relation-
ship matrix was constructed using all available markers for each
study. All models were fit using the BGLR package in R with
20,000 iterations, of which the first 5000 were discarded (Perez
and de los Campos, 2014). The model for BayesB is given by:

y ¼ lþ Zu

XT

t¼1

wtat þ Zesþ eatjp; r2 ¼ 0 with prob: peNð0; r2Þwith prob: ð1� pÞ :
�

(9)

All matrices and vectors are described above. BayesB assumes
marker effects are drawn from a scaled-t mixture distribution
with a probability of ð1� pÞ and a point mass at 0 with a probabil-
ity p. BGLR places a beta prior on p.

Prediction accuracy was assessed using fivefold cross valida-
tion with 50 resampling runs, and was computed using Pearson’s
correlation between observed phenotypes and predicted genomic
values for accessions in the testing set. Genomic values for the
multi-kernel approach were computed as the sum of breeding
values from each random genetic effect. Correlation coefficients
were averaged across folds.

Data availability
Metabolomic data are provided via Cyverse and can be accessed
using the following url https://de.cyverse.org/dl/d/614C0960-
3D37-4C35-9E48-DA5CE9AB473C/DPmet.zip. All R code used for
analyses is provided as Rmarkdown files and can be accessed via
https://github.com/malachycampbell/OatLatentFactor.

Supplemental materials are provided at https://doi.org/10.
25386/genetics.13409696. Supplemental File S1 provides dereg-
ressed BLUPs, metabolite annotations, and factor loadings for the
1668 metabolites. Supplementary File S2 lists the metabolites
showing significant differences between subpopulations.
Supplementary File S3 provides summary statistics for GWAS
and a listing of markers used to create the biologically informed
kernels. The supplemental PDF document contains all supple-
mental figures and methods not described above.

Results
Metabolite differences across subpopulations are
primarily generated by drift
To characterize the metabolome of mature oat seed, we gener-
ated untargeted metabolite data using two mass spectroscopy
(MS) pipelines (gas chromotography MS, GC-MS and liquid chro-
motography MS, LC-MS) for 367 diverse accessions
(Supplemental File S1). The diversity panel consisted of 367
accessions that could be partitioned into six distinct genetic clus-
ters using a k-means clustering approach (Figure 1, A and B;
Supplementary Figure S1). The degree of stratification within the
population was minor. For instance, the first and second princi-
pal axes explained only 7.3% and 5.9% of the variance in genetic
relationships, respectively (Figure 1, A and B). In total, we quanti-
fied 1668 metabolites (601 for GC-MS and 1067 for LC-MS) across
the 367 accessions. PCA of the whole metabolome dataset did not
reveal any apparent clustering among accessions, and evidence
of stratification between genetically defined clusters was not vi-
sually apparent (Figure 1, C and D).
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To determine whether individual metabolites differed among

clusters, we performed a one-way ANOVA for each of the 1668

metabolites (Supplemental File S2). Despite no strong differentiation

of the metabolome between the six clusters, nearly 41% of the 1668

metabolites showed significant differences between one or more of

the subpopulations (Benjamini–Hochberg adjusted P-value; pBH <

0.01). We next elucidated whether these differences were due to se-

lection or drift by examining PST, a measure of phenotypic divergence

between clusters, and compared these values to the distribution of

genetic divergence (i.e., Fst) for all loci (Storz, 2002; Leinonen et al.

2013). This analysis revealed only 12 compounds with Pst values that

were greater than 80% of the FST values, indicating that the majority

of compounds differing between clusters diverged due to drift or

weak selection. Only four of these compounds have annotations and

were described as a putative steroidal glycosides, terpene glycoside,

triterpenoid, and 1-benzopyran. These results suggest that the diver-

gent metabolites are largely due to drift rather than selection.

Latent factor model selection
Given that only a fraction of the metabolites quantified in our

population were annotated (562 compounds), we leveraged the

correlation between annotated and unannotated metabolites to

infer biological processes in the oat seed with the rationale that

compounds participating in a related biological process will be

correlated. We used an unsupervised learning approach, EBMF,

that distills the covariance among the 1668 metabolites into a

lower dimensional set of unobserved constructs that may cause

this covariance (Wang and Stephens 2018). The observed pheno-

types are approximated using a linear combination of factor load-

ing and factor scores, and EBMF estimates priors for these terms

from the data (Wang and Stephens 2018).
Three latent factor models that differed in the family of prior dis-

tributions (Laplace, point normal, and adaptive shrinkage) for factor

loading and scores were evaluated, and the best model was selected

based on the goodness-of-fit and predictive ability (Owen and Wang

2016) (Table 1; Supplementary Figure S2). The Laplace family of den-

sities exhibited the lowest RMSE (0.970) and highest correlation be-

tween predicted and observed data (r¼ 0.520). This model revealed

that the common covariance in the oat seed metabolome could be

captured using 100 latent factors that collectively explained 58.8%

of the total variance in the metabolite data. The PVE by individual

factors ranged from 0.036% to 7.801%.

Figure 1 Principal component (PC) analysis of genotypic and metabolomic data. The first four PCs of gentoypic data are shown in panels (A and B),
while the first four PCs of the metabolomic data are shown in panels (C and D). Subpopulations that were defined based on k-means clustering of SNP
marker data are indicated by different colored points. PVE, percent variance explained.
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Factor analysis identifies sets of compounds
coordinated by biological processes
The covariance among metabolites may be due to underlying bio-
chemical/biological process or could be caused by an unac-
counted confounding factor (i.e., population structure). We
sought to partition latent factors into those consistent with the
former possibility (a biological process) and those consistent with
the latter (a confounding effect) (Bello et al. 2018). Since we
showed that most population structuring of metabolites was
caused by drift, we expect their coordination to be largely ran-
dom, and therefore unrelated to their functional class. We
assessed enrichment for functional classes within each factor, as
well as the relationship between factors and population struc-
ture.

To assess biological enrichment, we determined whether the
variance explained by a given metabolite functional class within
a factor was significantly greater than might be expected by
chance. We used ClassyFire hierarchical ontologies to calculate
the percentage of variance explained by each functional class for
each factor, and compared these values to an empirical null dis-
tribution to calculate P-values. The hierarchy consists of five lev-
els: kingdom, superclass, subclass, and parent (Feunang et al.
2016). Of the 100 factors identified with the EBMF approach, 37
showed significant enrichment in one or more categories at the
super-class level, while 40 and 36 factors showed significant en-
richment at the class level and subclass levels, respectively
(q< 0.05). Functional classes associated with lipids were most fre-
quently enriched in our dataset (Figure 2, A and B), indicating
that many factors may be capturing components of lipid metabo-
lism. In addition to lipids, four factors showed significant enrich-
ment for carbohydrates and carbohydrate conjugates, as well as
amino acids. These results suggest that many latent factors are
capturing meaningful biological processes that shape the seed
metabolome, and can help shed light on the meaning of unanno-
tated metabolites.

To address the possibility that latent factors were due to popu-
lation structure, we examined the percent of variation explained
by subpopulation. A linear model was fitted to each latent factor
that included subpopulation assignment as a fixed effect. The
PVE by subpopulation ranged from 0.03% to 29.8%, and subpopu-
lation explained more than 20% of the variation for factors 7 and
12. Factor 7 did not show functional class enrichment but factor
12 was enriched across all hierarchies for lipid and lipid-like mol-
ecules—specifically steroidal glycosides (q< 0.05). Interestingly,
the Pst for this factor (0.27) was higher than the top 80th percen-
tile of Fst (0.23), suggesting that the differences between subpopu-
lations for this factor may be due to selection rather than drift.
The high frequency of enrichment for functional classes of

metabolites, as well as the relatively small amount of variation
that was attributed to subpopulations suggests that these con-
structs can provide biochemically meaningful insights into the
seed metabolome.

Elucidating the origin of latent factors
We used a Bayesian whole genome regression approach, Bayes
Cp, to estimate variance components, as well as estimate the de-
gree of polygenicity of each factor (Habier et al. 2011). Bayes Cp

assumes markers have a zero effect with probability p and a non-
zero effect with probability ð1� pÞ. p is treated as an unknown
and is estimated from the data. Thus, the magnitude of ð1� pÞ
can provide a metric to assess the polygenicity of the trait.
Narrow-sense heritability estimates (h2) ranged from 0.01 to 0.80,
indicating that variation for many of the latent factors could be
attributed to additive genetic effects (Supplementary Figure S4).
Moreover, as indicated by the range of ð1� pÞ, this genetic vari-
ance is manifested in a wide range of architectures
(Supplementary Figure S4).

The distribution of loading values for each latent factor var-
ied—some factors showed dense loadings (i.e., they generate co-
variance for many metabolites), while others showed sparse
loadings (i.e., generate covariance among few compounds). These
loadings were sampled from a scale mixture distribution where
nonzero loadings are sampled from a Laplace distribution with a
probability of ð1� vÞ and a point-mass at zero with a probability
of v. Given that latent factors with dense loadings will generate
covariance for many metabolites, we hypothesized that these
factors will likely have a complex genetic architecture. To test
this, we performed a partial Spearman’s correlation between pol-
ygenicity and the density of factor loadings while accounting for
the heritability (h2) of each factor. To further support this rela-
tionship, we performed GWAS on factor scores for each factor
and estimated the partial correlation between the proportion of
variance explained by significant GWAS associations
(p < 2:57� 10�7) and the density of factor loadings. These analy-
ses revealed a significant positive correlation between ð1� vÞ and
ð1� pÞ (q ¼ 0:35; p ¼ 4:5� 10�4) and a negative relationship be-
tween proportion of variance explained by significant GWAS
associations and ð1� vÞ (q ¼ �0:42; p ¼ 1:72� 10�5), indicating
that factors that capture (co)variance among many metabolites
tend to be controlled by many loci with small effects (Figure 3;
Supplementary Figure S3). However, several exceptions to this re-
lationship were observed. For instance, factors 4, 13, 17, and 25
exhibited low polygenicity and dense loading patterns (Table 2),
indicating that these factors may be driven by loci with pleiotro-
pic effects on the metabolome.

Biologically informed prediction of seed
quality traits
Ultimately, the aim of this study was to translate insights from
the metabolome into genetic resources that can be used by
breeders to make broad changes to oat seed composition. We as-
sume that loci with large effects on multiple metabolites will be a
more valuable resource to oat breeders than loci that affect one
or a few metabolites. The GWAS on factor scores identified 666
markers associated with 23 factors (p < 2:57� 10�7;
Supplementary File S3, Supplementary Figures S6–S28).
A comparison of these results with associations from GWAS on
individual metabolites is provided in Supplemental File S3. We
assessed whether these associations could be leveraged to im-
prove genomic prediction for seed quality traits in two indepen-
dent studies. The first study quantified 10 fatty acids (FA) in

Table 1 Empirical Bayes matrix factorization model selection

EBNM Appr. No. Fact. LL PVE R2
adj rðYtst ; Ŷ tstÞ RMSE

Ad. Shr. 102 �581716.3 59.41 0.438 0.322 1.451
Point Nor. 106 �583809.9 59.36 0.429 0.514 0.978
Laplace 100 �584317.2 58.82 0.434 0.520 0.970

Each model was fit using degressed BLUPs for 1668 metabolites. Ad. Shr.:
adaptive shrinkage family of densities described by Stephens (2016). Cross-
validation (CV) was based on a threefold orthogonal CV described by Wang
and Stephens (2018) and Owen and Wang (2016) with 10 independent
resamplings. Point Nor.: point-normal family of densities which are a normal
distribution with a point mass at zero; LL indicates log-likelihood; PVE: percent
variance explained; R2

adj: adjusted R2; rðYtst ;Ŷ tst Þ is the Pearson’s correlation
between predicted and observed values for observations in the testing set;
RMSE: root mean square error.
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mature seed for 338 oat lines grown in two locations using tar-

geted GC-MS. Of the 338 accessions evaluated, 330 overlapped
with the panel used for factor analysis. The second study assayed

seed lipid and protein content using near-infrared spectroscopy

(NIRS) for 210 accessions from six trials with less than 6% of the
lines (12 lines) overlapping with the panel used here for factor

analysis. We compared three prediction frameworks to predict
seed-quality phenotypes across trials: genomic BLUP (gBLUP),

multi-kernel BLUP (MK-BLUP), and a Bayesian regression ap-
proach (BayesB) that better accommodates large effect QTL

(Meuwissen et al. 2001).
The MK-BLUP framework uses two kernels to capture additive ge-

netic effects, one of which is constructed from markers associated

with latent factors and markers in LD with these. We refer to this as

the “biologically informed” kernel. The second kernel is constructed
from all other markers. We evaluated two biologically informed ker-

nels: one that used markers associated with any latent factor (MK-

all) and one that only used markers associated with factors enriched
for “Lipid and lipid-like molecules” (factors 4, 17, and 34; MK-lip).

Prediction accuracy was assessed using fivefold cross validation
with 50 resampling runs, and the MK-BLUP models were deemed to

significantly improve prediction if prediction accuracies for MK-
BLUP were higher than gBLUP or BayesB in 90% of resampling runs.

In general, the MK-lip approach showed the highest prediction ac-

curacies for most traits. MK-lip showed a significant improvement

over gBLUP for seven of the 10 FA traits (Figure 4). The percent

Figure 2 Functional enrichment among latent factors. Number of latent factors enriched (FDR < 0.05) for functional categories at the super-class level
(A) and class level (B). Percentage of variance explained for each factor by a given functional category (C). Each point represents a functional class that
was significantly enriched for one or more factors with the size of the point being proportional to the percentage of variance explained by that class for
a given factor. Only factors and classes that showed significant enrichment (q< 0.05) at the super-class level are pictured. Colors differentiate between
the class and subclass levels of the taxonomic hierarchy.
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change in prediction accuracy for FA traits ranged from �0.57% to
23.10% (Figure 4B). Carlson et al. (2019) reported several large-effect
QTL for FA traits. Whereas gBLUP provides equal shrinkage across
markers, the MK-approach may shrink markers in each kernel differ-
ently. Thus, the improved prediction accuracy observed for MK-lip
over gBLUP may be due to the reduced shrinkage of large-effect loci
encoded by markers in the biologically informed kernel
(Supplementary Figures S5, S7, and S10). To test this, we compared
both multi-kernel approaches to BayesB. MK-lip significantly out-
performed BayesB for two of the ten fatty acid traits [14:0 and
18:1([9); Supplementary Figure S28]. MK-all showed a significant im-
provement over gBLUP for 20:1, but did not show a significant im-
provement over BayesB for any trait. MK-lip out-performed both
gBLUP and BayesB for total lipid content measured via NIRs (Figure 5;
Supplementary Figure S29). On average MK-lip showed a 9.9% in-
crease in prediction accuracy over gBLUP and a 9.5% increase over
BayesB for total lipid content (Supplementary Figure S29). These
results indicate that the genetic signal captured by latent factors can
be leveraged to improve selection for seed compositional traits in oat.

Discussion
The oat seed harbors a rich array of biochemical compounds that
are important for human health, and considerable variation for

these compounds exist in oat germplasm (Peterson and Wood,
1997; Frey and Holland, 1999; Gulvady et al. 2013; Zhou et al.
2019). Accessing this variation is necessary to rapidly deliver oat
varieties with beneficial nutritional profiles to the consumer.
Advances in metabolic profiling over the past 20 years has pro-
vided a suite of tools to comprehensively assess these com-
pounds, along with many others, in large populations and to
elucidate their regulation (Keurentjes et al. 2006; Tohge and
Fernie 2010). Despite these advances, significant challenges re-
main. Structural elucidation and metabolite identification re-
main a significant bottleneck in characterizing the metabolome
using untargeted metabolomics (Dunn et al. 2013). Many of the
publicly available databases do not adequately capture the rich
diversity of metabolites that are produced in plant species (De
Vos et al. 2007; Tohge and Fernie 2010). Therefore, approaches
that uncover the relationships between metabolites, both known
and unknown, may help shed light on the function of these com-
pounds.

Despite being able to reliably detect the abundance of 1668
compounds in the current study, less than a third of these com-
pounds were annotated. We used a latent factor approach that
leverages the correlation between metabolites to help elucidate
their function. Our rationale is that metabolites that participate
in the same pathway should be correlated. Thus, by extracting
the major correlation patterns in the observed variables we can
begin to elucidate the biochemical pathways that shape the seed
metabolome. Moreover, by studying the relationships among an-
notated metabolites, we can generate new hypotheses to under-
stand the function of unannotated compounds.

Characterizing the metabolome using latent
factors
Our enrichment approach helped shed light on the biochemical
processes these latent factors might affect. For instance, we
found significant enrichment for a range of processes associated
with primary metabolism (amino acids, phospholipid

Figure 3 Relationships between polygenicity, density, and heritability. (A) Association between polygenicity (1� p) and density ranks (1� v) after
accounting for heritability (h2). Each variable was ranked from smallest to largest and the ranks for ð1� pÞ and ð1� vÞ were each regressed on ranks for
h2. The scatter plot depicts the relationship between the residuals (Resid.) for each of these models. Colored points indicate factors that were enriched
for lipids (Lip. Enr.), and different shapes indicate whether the factor was used to inform the lipid-enriched kernel for genomic prediction (Gen. Pred.).
(B) Pairwise relationships between the ranks for each variable.

Table 2 Factors capturing covariance between many metabolites
with simple genetic architectures

Factor 1� p 1� v R2
GWAS

4 4:69� 10�3 0.621 0.08
13 7:80� 10�4 0.369 0.29
17 4:70� 10�4 0.413 0.19
25 5:54� 10�4 0.247 0.06

Polygenicity estimates were based on the posterior means of 1� p and the
proportion of variance for captured by significant GWAS associations for each
factor (R2

GWAS), and the density of factor loadings are provided as 1� v.
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metabolism) and secondary metabolism (coumarin and terpe-
noid metabolism). Since roughly 30% of the metabolites assayed
had functional annotations, this enrichment approach may shed
light on the function of unannotated metabolites. For instance,
factor 4 showed significant enrichment for “lipid and lipid-like
molecules.” Although only 45 of the top 100 compounds with
high loadings were annotated, the high correlation between these
unknown compounds and lipid-like compounds suggests puta-
tive role in lipid metabolism. Although further analyses are nec-
essary to elucidate the structure of these unknown metabolites,
we show that enrichment provides a data-driven approach to
generate hypotheses for these unannotated metabolites.

One overarching pattern observed across latent factors is the
enrichment for compounds related to lipid metabolism. At the
super-class level 21% of factors were significantly enriched for
“lipid and lipid-like molecules,” and these patterns were consis-
tent at more specialized levels of lipid metabolism. Oat is unique
among cereals in both the abundance and distribution of lipids

within the seed (Price and Parsons 1975; Frey and Holland 1999;
Gulvady et al. 2013). And with approximately 57% of the anno-
tated metabolites in our data classified as lipid-like compounds,
it is not surprising that categories associated with lipid metabo-
lism were most frequently enriched. It is possible that other pro-
cesses are prevalent in the metabolome and are reflected in the
latent constructs, but remain undetected due to the annotations
that were used for functional enrichment.

The ontologies used for functional enrichment are based on
structural similarities between compounds, rather than
pathway-based relationships. We expect compounds involved in
the same pathway to be correlated, and since latent factors are
defined by these correlations, they should in some sense be an
abstraction of these pathways. Biochemical reactions often in-
volve compounds with dissimilar structures, thus enrichment
based on structural similarities may bias enrichment toward
pathways composed of structurally similar metabolites (e.g., lipid
metabolism). While this enrichment approach may be imperfect,

Figure 4 Genomic prediction for fatty acid compounds. Prediction accuracy was assessed using fivefold cross validation with 50 resampling runs. (A)
The distribution of Pearson’s correlation (r) coefficients between observed phenotypes and genetic values for each fatty acid compound. Panels (B and
C) show the percent difference (% diff.) in prediction accuracy for the multi-kernel (MK) approach relative to genomic BLUP (gBLUP). The suffixes “-all”
and “-lip” indicate models where the biologically informed kernel was constructed from markers associated with any latent factor or lipid-enriched
factors, respectively. Three-hundred thirty lines used in this study were also used for factor analysis of metabolomic data.

M. T. Campbell et al. | 9

D
ow

nloaded from
 https://academ

ic.oup.com
/genetics/advance-article/doi/10.1093/genetics/iyaa043/6126812 by guest on 05 M

arch 2021



other studies have used similar approaches to test for functional
enrichment and have proven to be useful in other species
(Barupal and Fiehn 2017; Fan et al. 2018; Marco-Ramell et al. 2018;
Showalter et al. 2019). For instance, the ChemRich approach de-
veloped by Barupal and Fiehn (2017) uses the ClassyFire ontology
to classify compounds into functional classes and tests for en-
richment using a Kolmogorov–Smirnov test. Annotations that
map metabolites to a pathway can provide additional evidence
that these latent factors are indeed due to an underlying bio-
chemical process; however, current resources that are available
do not provide the breadth and resolution necessary to perform
such analyses.

Understanding the origin of latent factors
Although it may seem reasonable to suggest that the observed
covariance among metabolites is due to a biological cause that is
manifested in the metabolome, making causal inferences from
observational data is nontrivial due to the presence of confound-
ing factors (Spirtes et al. 2000; Rosa and Valente, 2013; Bello et al.
2018). Given these data were collected on a structured popula-
tion, it is expected that some of this covariance can be attributed
to population structure, which can influence the construction of
latent variables if not taken into account (Phillips et al. 2001).
There are many ways to account for structure in the definition of
latent factors, either by including the genomic relationship ma-
trix, or some component(s) of it, in the factor analytic model or
by regressing-out these effects prior to factor analysis. However,
it is important to consider whether these steps are necessary.
While such measures will control for confounding due to struc-
ture, they will also remove possibly meaningful biochemical rela-
tionships that are associated with structure. For instance, if a set
of compounds participating in a common pathway happen to dif-
fer between subpopulations, correcting for structure may remove
the latent factor that describes this process. We identified two la-
tent factors, factors 7 and 12, that were associated with popula-
tion structure. Enrichment analysis, as well as Pst � Fst, suggested
that factor 12 may indeed describe a biological process (steroidal
glycoside metabolism) that was affected by selection. This factor

would likely be removed if structure were accounted for prior to
factor analysis.

If subsequent genetic analysis are planned for latent factors,
regressing-out structure may also remove meaningful genetic
signal. Given the minor structure observed among accessions in
the diversity panel and the importance of preserving genetic sig-
nal in the factor scores, we thought that measures to account for
structure could be harmful to the study as a whole. Moreover,
our downstream association mapping approaches accounted for
population structure by using the first two PCs, as well as a kin-
ship matrix based on allele dosages. In the event that some latent
factors were defined based on kinship, we do not expect to re-
cover any signal from association mapping with scores for these
latent factors.

Due to the observational nature of these data, we should not
place too much emphasis on causality in a purely biological
sense when interpreting these latent factors. Rather it is impor-
tant to consider the limitations of the study, interpret latent fac-
tors with caution, and view them as a means to generate testable
hypotheses. The aims of our study were to (1) elucidate the major
biochemical processes in the oat seed metabolome, and (2) to le-
verage these insights to improve selection for seed quality. Thus,
hypotheses are generated in the former and are tested in the lat-
ter. If latent factors do not represent a causal effect then we
should not see any improvement in predictions when inferences
on these constructs are extended to new studies and/or popula-
tions.

Translating “omics” insights to crop
improvement
Two independent studies were used to determine whether biolog-
ical signal in the latent factors could be generalized to other pop-
ulations and/or traits. The fatty acid dataset can be viewed as a
resource to test whether the information learned by latent fac-
tors is reproducible, while the NIRS dataset provides a means to
test whether this information is transmissible to related traits in
new populations. We distinguish between these two because: (1)
the majority of accessions included in the fatty acid dataset are

Figure 5 Genomic prediction for lipid and protein content measured via NIRS. Prediction accuracy was assessed using fivefold cross validation with 50
resampling runs. (A) The distribution of Pearson’s correlation (r) coefficients between observed phenotypes and genetic values for each fatty acid
compound. (B) The percent difference (% diff.) in prediction accuracy for the multi-kernel (MK) and BayesB approaches relative to genomic BLUP
(gBLUP). The suffixes “-all” and “-lip” indicate models where the biologically informed kernel was constructed from markers associated with any latent
factor or lipid-enriched factors, respectively. Three-hundred thirty lines used in this study were also used for factor analysis of metabolomic data.
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accessions that were used for the factor analysis metabolome
study, while less than 6% of accessions are common between the
factor analysis and the NIRS studies; (2) the fatty acid data was
generated using targeted metabolomics, meaning there should
be a high correspondence between the metabolites measured in
the fatty acids study and those that were assayed for the factor
analysis metabolome study Carlson et al. (2019).

We observed the greatest improvements in prediction accu-
racy among all traits for the biologically informed prediction
model over gBLUP for these compounds when the kernel was
constructed using associations for lipid-enriched factors. This im-
provement can be attributed to the ability of the multi-kernel ap-
proach to accommodate the large-effect QTL identified by
Carlson et al. (2019), and/or the genetic signal associated with
lipid metabolism encoded in the biologically informed kernel.
MK-lip out-performed BayesB for two of the 10 fatty acid traits
and generally showed higher prediction accuracies than BayesB
for most FA traits. These results suggest that MK-lip both better
models the genetic architecture of the FA traits, and captures rel-
evant components of lipid metabolism. A comparison of the
GWAS hits in Carlson et al. (2019) and those in our study showed
little overlap, with two common associations identified for factor
13 and the tenth PC of fatty acid phenotypes in Carlson et al.
(2019), and factor 17 and 14:0 in Carlson et al. (2019). Of these two
factors, only factor 17 showed enrichment for “lipid and lipid like
molecules” at only the super-class level. Enrichment for 1-acyl-
sn-glycero-3-phosphocholines was the top-ranked category at
the parental class (q¼ 0.058). Hydrolyzation of these compounds
by phospholipase A1 yields a fatty acid. Although additional stud-
ies are necessary to elucidate the biochemical pathways associ-
ated with factor 17, these results provide an interesting link
between 1-acyl-sn-glycero-3-phosphocholines catabolism and
fatty acid abundances and the possibility of modifying 1-acyl-sn-
glycero-3-phosphocholine metabolism to fine-tune fatty acid pro-
files in oat. Although it is difficult to connect loci associated with
latent factors with changes in specific metabolites, our polygenic-
ity analysis offers a more general explanation—specifically, that
these loci may affect many metabolites. This is supported by
GWAS on individual metabolite levels. Markers that were identi-
fied in both factor score-based GWAS and GWAS on metabolite
tended to be associated with more than one metabolite, while
marker associations that were identified only with GWAS on
metabolites were predominately associated with one metabolite
(Supplementary Figure S30).

The second study with NIRS-derived composition measurements
provides several realistic challenges and should be a reasonable esti-
mate of how the biologically informed model would perform in a
breeding program. The population that was evaluated for NIRS phe-
notypes is largely independent from the population that was used
for factor analysis, with only about 6% of the accessions with NIRS
phenotypes also having factor scores. Moreover, the NIRS pheno-
types are only approximations of total lipid or protein content. Thus,
there is lower correspondence between the metabolites that were
used for factor analysis and the phenotypes used for prediction. The
advantage of using NIRS to estimate seed metabolites is that it is a
relatively low-cost phenotyping approach compared to metabolo-
mics and is high throughput, making it a tractable solution for
many breeding programs interested in improving health-promoting
compounds (Diepenbrock and Gore, 2015). Despite these challenges
the multi-kernel prediction approach—when informed using
markers associated with lipid-enriched factors—significantly im-
proved prediction for lipid content compared to gBLUP and BayesB.

On the relationship between factor density and
polygenicity
The positive relationship observed between the magnitude of pol-
ygenicity and loading densities, indicates that latent factors that
influence many metabolites are more likely to have a complex
genetic architecture. These observations are somewhat expected.
If these dense latent factors are representative of some central
component of the metabolomes, perturbations on these pro-
cesses would likely result in large-scale changes in the metabo-
lome and may affect fitness. Therefore, it is important that these
processes are robust to mutations and are maintained at, or near
some optima. This is the basis of canalization: important physio-
logical processes will evolve to reach robust optima (Waddington
1942; Gibson 2009). And suggests that much of the oat seed
metabolome is under optimizing or stabilizing selection (Slatkin
1970).

Perhaps what is more interesting are the factors that deviate
from this relationship, specifically factors 4 and 17. Both exhib-
ited dense loading patterns, oligogenic architectures (ranked 8th
and 17th for density, respectively, and 50th and 73rd for polyge-
nicity), and were enriched for lipids. The large-effect loci associ-
ated with these latent factors may have pleiotropic effects, or
may consist of a set of tightly linked genes that influence the
abundance of lipid-like compounds. This may explain the devi-
ance from the density-polygenicity relationship observed for
other factors. The presence of these loci raises a larger question,
specifically Why are these loci segregating in the population? The the-
oretical and simulation studies by Orr (1998, 1999), as well as em-
pirical evidence in maize and other species may help explain
these observations (Doebley et al. 1997; Van Laere et al. 2003;
Colosimo et al. 2004; Wang et al. 2005; Carlborg et al. 2006; Boyko
et al. 2010; Brown et al. 2011). For “older” traits—i.e., those associ-
ated with adaptation in natural environments—such large effect
alleles at these loci would likely be removed through negative se-
lection as these alleles may shift phenotypes far from the optimal
values (Orr 1998, 1999). This was proposed by Brown et al. (2011)
to explain the small effect sizes for flowering and leaf traits in
maize. This is not necessarily the case for traits that are relatively
“new” in evolutionary history or are not associated with adapta-
tion. For instance, plant architecture and inflorescence traits
have relatively simple genetic architectures in maize and are re-
cent targets for artificial selection (Doebley et al. 1995, 1997;
Wang et al. 2005; Brown et al. 2011; Wallace et al. 2014). This is
also the case for traits under recent artificial selection in other
species (Van Laere et al. 2003; Colosimo et al. 2004; Carlborg et al.
2006; Boyko et al. 2010). While it is unknown whether seed lipid
content has any adaptive significance in oat, lipid content and
traits that are genetically correlated with lipid content (i.e., b-glu-
cans) are important targets for many breeding programs (Welch
and Lloyd 1989; Kibite and Edney 1998; Cervantes-Martinez et al.
2002). Thus, the oligogenic architectures for factors enriched for
lipids may be a reflection of this relatively recent selection by
breeders for lipids or traits that are genetically correlated with
lipids.

Conclusions
This study shows that, we can translate biological knowledge
obtained from the characterization of high dimensional “omics”
data to improve prediction and selection for agriculturally impor-
tant traits. The matrix factorization approach used here provides
an effective means to reduce the dimensionality of the data,
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while still preserving important biological features that generate

correlation in the observed phenotypes. This can help reduce the

multiple testing burden often experienced with GWAS on “omics”

data and allow the recovery of meaningful genetic signal. We

have shown that this signal can be leveraged to improve predic-

tion in independent populations, as well as for low-cost pheno-

types that provide an approximation of biochemical attributes. In

a broader context, we outline an approach that can be used to

manage the allocation of phenotyping resources and improve

breeding decisions. For instance, breeders can phenotype a single

replicate of a “discovery” population with a costly, high-

resolution “omics” technology and these data can be used to in-

form predictions for low-cost, lower-resolution phenotypes in

new populations or trials. These approaches can be easily ex-

tended to other crops, tissues and “omics” technologies to im-

prove predictions for complex traits.
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