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Abstract

Advances in next-generation sequencing offer high-throughput and cost-effective genotyping alternatives, including
genotyping-by-sequencing (GBS). Results have shown that this methodology is efficient for genotyping a variety of species,
including those with complex genomes. To assess the utility of GBS in cultivated hexaploid oat (Avena sativa L.), seven bi-
parental mapping populations and diverse inbred lines from breeding programs around the world were studied. We
examined technical factors that influence GBS SNP calls, established a workflow that combines two bioinformatics pipelines
for GBS SNP calling, and provided a nomenclature for oat GBS loci. The high-throughput GBS system enabled us to place
45,117 loci on an oat consensus map, thus establishing a positional reference for further genomic studies. Using the
diversity lines, we estimated that a minimum density of one marker per 2 to 2.8 cM would be required for genome-wide
association studies (GWAS), and GBS markers met this density requirement in most chromosome regions. We also
demonstrated the utility of GBS in additional diagnostic applications related to oat breeding. We conclude that GBS is a
powerful and useful approach, which will have many additional applications in oat breeding and genomic studies.
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Introduction

Cultivated oat (Avena sativa L.) is an allohexaploid

(2n = 6x = 42) crop species that is grown as a source of food and

feed. Oat and other crop species require continuous genetic

improvement to meet the agronomic and nutritional needs of

modern agriculture and food production. Major crop species such

as corn, rice, wheat, canola, and soybean are benefiting

considerably from advances in genome science and molecular

breeding. These advances include the discovery and marker-

assisted selection of single genes and quantitative trait loci (QTL),

as well as the use of genomic selection (GS; [1,2]) to identify

genotypes with superior performance and breeding value. Oat has

also benefited from a long history of genomic and nutritional

research [3] and from recent advances provided by a SNP

platform and consensus map [4]. However, further advancements

and applications of genomic technologies that can be integrated

into traditional breeding strategies to accelerate and improve the

development of superior oat cultivars are needed.

GS can be more efficient than phenotypic selection or marker-

assisted selection for improving complex traits [5], and this has

been demonstrated in oat [6]. Beyond GS, genomic characteriza-

tion of breeding material offers many additional opportunities,

including: the ability to monitor, maintain and expand germplasm

diversity; the ability to diagnose identity or parentage of unknown

material; and the ability to discover and deploy specific beneficial

alleles [7,8]. Opportunities also exist for gene discovery, since

species such as oat have unique biochemical pathways and

adaptations not found in model plant species [9]. There are many

technologies that can be applied routinely to whole genome

characterization. These include parallel assays that target semi-

random polymorphisms, such as Amplified Fragment Length

Polymorphism (AFLP) and Diversity Array Technology (DArT), as

well as parallel assays for specific single nucleotide polymorphisms

(SNPs), such as the Golden Gate assays (Illumina, San Diego, CA).

All technologies have strengths and weaknesses. Those that

identify semi-random polymorphisms may not provide an

adequate density of markers throughout the genome, and the

technology may not transfer well between laboratories and

different germplasm sets. The application of DArT technology

in oat has been successful [10], but only a few hundred of the

currently developed markers will segregate in a given population

(unpublished results). The recently-developed SNP assay for oat

[4] has a similar marker density to the DArT assay, but provides

more precise and well-characterized gene-based predictions that

may be more uniformly distributed throughout the genome and

amenable to comparative mapping.

In oat, as in other polyploid species, genotyping is complicated

because of the presence of homoeologous sub-genomes. Markers

must be filtered to eliminate those that are confounded by multiple

loci. This problem is less prevalent in pre-filtered SNP assays than

it is in untargeted assays, although there are still SNP markers

known to target different loci in different populations [4]. In all

technologies, cost remains a critical factor. Currently, costs for

DArT analysis and Illumina-based SNP assays range from $US

50–60 per sample, which can be prohibitive for routine genomics-
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assisted breeding where a large number of the lines will be

discarded following genotyping and selection.

Recently, a robust genotyping method based on the sequencing

of partial genome representations has been developed for parallel

high-throughput genotyping. This is referred to as genotyping-by-

sequencing (GBS) [11]. GBS utilizes one or more restriction

enzymes [12] to digest the genome into fragments that are then

sequenced by parallel high-throughput methods. Based on the

sequencing data, SNP calling can be done using various

bioinformatics pipelines [12–22]. Low per sample cost in GBS is

achieved by multiplexing samples from many (e.g., 48, 96, or 384)

different genetic entities (hereafter ‘lines’) simultaneously through

the use of short specific ‘barcodes’ ligated to each sample prior to

sequencing. Thus, it is possible to reduce the cost per sample by

multiplexing more lines for sequencing. For example, if 96 samples

are sequenced in a reaction costing $960, the cost per sample

would be $10 over and above the costs of sample preparation and

bioinformatic analysis. The cost will also be affected by the choice

of single-end or paired-end sequencing. GBS has been useful in a

variety of applications in crop plants including: saturating an

existing genetic map [19], genome characterization in wheat and

barley [12], genomic selection in wheat [23], the genetic ordering

of a draft genome sequence in barley [24,25], and the

characterization of germplasm diversity in maize and switchgrass

[8,16]. These results suggest that GBS could be utilized for basic

and applied genomic studies in oat.

Here, we report the development and application of GBS in oat

mapping populations and a diverse set of oat germplasm. Our

objectives were: (1) to evaluate the effects of different factors that

influence the quality and quantity of GBS SNP calls and establish

a baseline of operating parameters and expectations for GBS in

oat; (2) to compare alternate methods of bioinformatics analysis

and establish a pragmatic workflow and nomenclature for GBS

data analysis in oat; (3) to saturate a consensus linkage map with

GBS loci and establish a positional reference for future work; and

(4) to investigate the utility of GBS to address a variety of questions

that are typical of potential uses, including: de novo linkage

mapping, characterizing population structure and linkage disequi-

librium, and solving diagnostic issues in breeding germplasm. We

discuss these results in the context of where GBS is likely to be

most useful in crop development.

Materials and Methods

Genetic materials
Sets of germplasm used in this study are listed in Table 1.

Additional diverse oat lines not reported in this study were

prepared and sequenced in parallel with this work, which led to a

total number of 2,664 oat lines being genotyped with GBS. These

samples are mentioned because their presence may have had a

minor influence on the parallel sequencing results or global allele-

calling pipelines. These effects would be marginal, since more

stringent filters were applied within sub-populations.

DNA sample preparation
The isolation of DNA was performed using a variety of

methods, as some samples were available from previous studies.

The preparation of DNA stocks from the CxH, HxZ, OxT, OxP,

and PxG populations was described by Oliver et al. [4], while

stocks from the KxO population were prepared as described by

Wight et al. [26]. The latter stocks still contained RNA, which was

removed using a standard RNase procedure followed by phenol/

chlorofrom extraction and ethanol precipitation.

For the diversity population (IOI panel), eight seeds of each line

were germinated in cyg growth pouches (Mega International,

Minneapolis, MN, USA). Leaf tissue was harvested in bulk as the

second leaves emerged and was put into paper envelopes

containing a 5:1 mix of non-indicating and indicating silica gel

desiccant. The paper envelopes were then placed in sealed

containers for drying. For the VxL population, leaf tissue was

harvested from plants growing in the field, then dried in the same

manner. DNA was extracted from the VxL and IOI leaf samples

using DNeasy Plant Maxi kits (Qiagen Inc., Mississauga, ON,

Canada).

GBS library preparation and sequencing
The GBS libraries were constructed in 95-plex using the P384A

adapter set (Table S2 in [12]). For each plate, a single random

blank well was included for quality control to ensure that libraries

were not switched during construction, sequencing, and analysis.

Genomic DNA was co-digested with the restriction enzymes PstI
(CTGCAG) and MspI (CCGG) and barcoded adapters were

ligated to individual samples. Samples were pooled by plate into

libraries and polymerase chain reaction-amplified. Detailed

protocols can be found in [23]. Each 95-plex library was

sequenced to 100 bp on a single lane of Illumina HiSeq 2000 or

HiSeq 2500 by the DNA Technologies core facility at the National

Research Council, Saskatoon, SK, Canada.

UNEAK GBS pipeline
Sequence results were analysed using the UNEAK GBS

pipeline [16], which is part of the TASSEL 3.0 bioinformatics

analysis package [27]. This method does not require a reference

sequence, since SNP discovery is performed directly within pairs of

matched sequence tags and filtered through network analysis. In

this method, tags (a tag is an unique sequence representing a group

of reads) belonging to complex multi-locus families (as determined

by network analysis) are ignored. Parameters in the UNEAK

pipeline were set for maximum number of expected reads per

sequence file (300,000,000), restriction enzymes used for library

construction (PstI-MspI), minimum number of tags required for

output (10), maximum tag number in the merged tag counts

(200,000,000), option to merge multiple samples per line (yes),

error tolerance rate (0.02), minimum/maximum minor allele

frequencies (MAF, 0.02 and 0.5), and minimum/maximum call

rates (0 and 1). Call rate is defined as the proportion of samples

that are covered by at least one tag. The MAF and call rate were

set at a low value for global analysis because these parameters were

filtered within sub-populations in later steps.

GBS pipeline using population-level filter
A second SNP calling pipeline was employed as described by

Poland et al. [23]. This pipeline is implemented in TASSEL 3 and

was functionally identical to UNEAK to the point of developing a

binary presence/absence matrix for each tag across multiple lines.

To identify putative SNPs, tags were internally aligned allowing up

to 3 bp mismatch in a 64 bp tag. From aligned tags, SNP alleles

were identified and the number of lines in the population with

each respective tag was tallied in a 262 table, counting the

number of lines with one or the other tag, both, or neither [23]. A

Fisher Exact Test was then used to determine if the two alleles

were independent, as would be expected for a single locus, bi-

allelic SNP in a population of inbred lines. If the null hypothesis of

independence for the putative SNP was rejected (p,0.001), we

assumed that the tags were allelic in the population (and, therefore,

that the putative SNP was a true single locus, bi-allelic SNP). A

significance threshold of p,0.001 was selected for the size of
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population, based on previous work testing false discovery rates in

duplicate samples.

Filtering and merging GBS SNP calls
Both of the above pipelines were applied globally to all available

sequencing data, except where we deliberately tested SNP

identification in partial datasets. This global strategy reduced the

need to access large sequencing files repeatedly. However, there

was then a need to generate genotype data for specific sub-

populations, and to apply population-specific filters for allele

frequency, heterozygosity, and data completeness (data complete-

ness is defined as 100% - % missing data; e.g., for a marker

genotyped on 100 individuals with 10 individuals showing missing

data points, the completeness of the marker is 90%). Furthermore,

for genotypes of mapping progeny, it was necessary to recognize

the parental phase of alleles, and to represent alleles using

conventions required by the mapping software. These filters and

secondary analyses were applied using in-house software (‘CbyT’)

written in the Pascal programing language (Text S1). This software

provided the additional feature of maintaining a cumulative index

of unique SNPs with a consistent naming convention, such that

data from different pipelines or subsequent assays could be merged

to remove redundancy and to index matching SNPs with the same

unique name. Each subsequent analysis required specific filtering

criteria, which can be found at the beginning of the method

section for each type of analysis.

Linkage mapping
For bi-parental mapping populations, parental lines were

genotyped together with the progeny. GBS loci called using both

pipelines across six bi-parental RIL populations (OxP, PxG, OxT,

CxH, HxZ, and KxO) were filtered at $50% completeness, MAF

$35%, and heterozygosity #8% inside each population, which

gave a total of 45,117 GBS markers. The SNP data from the six

mapping populations reported by Oliver et al. [4] were filtered to

the same standards as the GBS SNP data, and the two data types

concatenated. Marker phases were determined using parental

genotypes when the latter were available and not monomorphic.

Monomorphic parental genotypes can result from genotyping

errors or genetic variation within the lines used to make the cross.

Markers for which there were no good parental data were

converted into both parental phases for further analysis. For each

mapping population, the phase of parental alleles was re-checked

across the concatenated data by enumerating, for each SNP, the

number of linked loci in the same phase (recombination fraction,

r,20%) vs. the number in opposite phase (r.80%). Loci having a

greater number of out-of-phase matches than in-phase matches

were rescored in the opposite phase, or were eliminated through a

recursive process if this did not improve the in-phase/out-of-phase

ratio.

An updated version of the oat consensus map developed by

Oliver et al. [4] was generated by placing each new candidate

locus (GBS or other non-framework SNP) relative to framework

SNPs from the existing map. Pair-wise recombination fraction (rf)
was first calculated for all marker pairs, including both framework

and non-framework markers. Marker placements were then made

relative to the two framework loci showing the smallest rf among

any of the six populations. The approximate map position of each

placed marker was subsequently estimated by interpolating the cM

position proportional to the recombination fraction with the

closest two framework loci. When the closest framework locus was

at the end of a linkage group, and the recombination with the

next-closest framework locus was greater than that between the

two framework loci, the candidate was placed distal to the end of

the linkage group. In addition to this crude approximation of

marker position, a detailed report of each placed marker was

produced to show the actual recombination frequencies within

each population and across populations between a given marker

and all other loci that were within 20% recombination in any of

the component populations. Marker data used for marker

placement on the oat consensus map are in Table S1.

De novo linkage map construction was performed using

MSTMap [28] for the VxL population. GBS loci for de novo
map construction were called using the UNEAK GBS pipeline

and filtered at high stringency (MAF $35%, completeness $90%)

at two different levels of heterozygosity (8% and 13%). The

resulting data contained 858 (heterozygosity $8%) and 1053

(heterozygosity $13%) GBS markers. The choices of 8% and 13%

corresponded to the expected heterozygosity at F5 and F4,

respectively, factoring in sequencing error and out-crossing rate.

For MSTMap, a p-value equal to 10211 was used for the marker

clustering threshold. Markers were excluded as unlinked if they

were 15 cM away from any other locus or if they belonged to a

Table 1. Populations and germplasm samples used in this study.

Genetic material Abbreviation Number of lines Reference* No. of SNP**

Bi-parental mapping populations

Otana x PI269616 (F6) OxP 98 [4] 17,137

Provena x GS7 (F8) PxG 98 [4] 11,755

Ogle x TAMO-301 (F6:7) OxT 53 [48] 30,726

CDC SolFi x HiFi (F7) CxH 52 [4] 8,324

Hurdal x Z-597 (F6) HxZ 53 [4] 4,219

Kanota x Ogle (F7) KxO 52 [49] 2,582

VAO-44 x Leggett (F4:5) VxL 145 This study 280 (373)

Diversity panels

Oat diversity panel IOI 340 [31] 2,155

*First publication that refers to the population
**No. of SNP filtered for subsequent analyses. Please refer to the text for filtering criteria. For VxL, two sets of filtering criteria were used. The only difference between
the filtering criteria sets is the heterozygosity level: 8% or 13% (SNP number is between brackets). For IOI, only markers passing filtering criteria with a map position
were reported in the table.
doi:10.1371/journal.pone.0102448.t001
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group containing only two loci. A simple recombination count was

used for the objective function. Since map distances estimated by

MSTMap are inflated (based on simulated data, result not shown),

we re-estimated the recombination fractions between pairs of loci

based on the marker order from MSTMap and converted them to

map distances using the Kosambi mapping function.

Population structure and LD analysis
For population structure and LD analysis, GBS markers called

by the UNEAK pipeline were filtered at $90% completeness,

MAF $5%, and heterozygosity #5%. Population structure was

investigated using principal component analysis (PCA). PCA was

performed with the ‘smartpca’ function implemented in EIGEN-

SOFT [29]. This function takes into account marker dependency

(i.e., markers in LD blocks) through the use of multiple-regression

on adjacent markers prior to PCA. The maximum interval

distance between markers (ldlimit) was set to 0.001. The number

of adjacent markers included in LD adjustment (ldregress) was set

at 0, 10, or 50 (designated k0, k10, and k50), such that k0 provided

no LD correction and k10 and k50 corresponded to the median

and maximum LD block sizes in the IOI dataset. Eigenvalues and

Eigenvectors were transferred to the R statistical package [30] for

scree plot drawing and other analyses.

A model-based approach was used to investigate the clustering

pattern among lines in the diversity panel further, because it

determines simultaneously the number of clusters and cluster

membership and does not have underlying genetic assumptions

that are rarely met [31]. Model-based clustering was based on the

first ten PC and conducted using the clustCombi function of the R

package mclust [32]. The purpose of clustCombi is to represent a

non-Gaussian cluster by a mixture of two or more Gaussian

distributions [33]. It first uses the Bayesian information criterion

(BIC) to identify the number of Gaussian mixture components and

then hierarchically combines components according to an entropy

criterion. The final decision concerning the number of clusters to

use was made based on an entropy plot; e.g., if six components

were identified by BIC and successive component combinations

showed no large entropy decrease after four clusters, then the data

were represented by four clusters.

Linkage disequilibrium (LD) between two loci was estimated as

squared allele-frequency correlations (r2) by an optimized version

(Stéphane Nicolas, personal communication) of LD.Measure in

the R package LDcorSV [34]. Four r2 estimates were calculated:

conventional r2 based on raw genotype data, r2 with population

structure included in the calculation (rs
2), r2 with relatedness

included in the calculation (rv
2), and r2 with both population

structure and relatedness included (rsv
2). Population structure was

represented by the first four PC after scaling the coordinate

identifiers across a range of zero to one. A matrix of relatedness

was calculated by A.mat, implemented in the rrBLUP package

[35].

The relationship between LD and genetic distance was modeled

by fitting two alternate non-linear regression models: a drift-

recombination equilibrium model [36] or a modified recombina-

tion-drift model including low level of mutation and an adjustment

for sample size [37]. Both models were summarized in [38].

Other statistical analyses
We wished to examine how GBS technology could be used to

solve diagnostic problems that arise occasionally in any plant

breeding program. Germplasm diagnostics were performed using

DARwin software [39] to generate clusters based on genetic

distances among lines, estimated using simple allele-matching for

bi-allelic diploid loci:

dij~1{
1

L

XL

l~1

ml

2

where dij is the dissimilarity between lines i and j, L is the number

of informative loci shared by those lines, and ml is the number of

matching alleles for locus l. Cluster analysis was performed using

the un-weighted paired group mean analysis (UPGMA) method.

Results

Library construction, sequencing and coverage
For this study, a total of 38 libraries were generated, each

multiplexing 95 lines. A single lane of Illumina HiSeq 2000 or

HiSeq 2500 was used to sequence each library. The GBS libraries

were constructed as previously described for wheat, with the

exception that the forward barcode adapter concentration was

reduced to 0.06 pmol for 200 ng of genomic DNA (vs. 0.1 pmol

used for wheat in [12]). This adapter concentration was found to

improve the oat libraries, reducing adapter dimers.

A complete set of short read archives for all GBS oat samples

analysed to date has been made available for download from the

NCBI short read archive (http://www.ncbi.nlm.nih.gov/sra/)

under project accession number SRP037730. Details of these

archives, including number of reads and number of good barcoded

reads at the level of each flow-cell, single lane, and individual

taxon are available in Table S4. Table S4 also provides the key file

needed to support re-analysis of the raw short read archives by

either of the GBS pipelines reported here.

From a total of 6.36109 reads, 84.4% (5.36109) included the

barcode sequence and enzyme cut-site, and had no unreadable

base (‘N’) in the sequence. The UNEAK pipeline found an average

of 732,396 tags per oat line in the samples reported here, a total

merged tag count across all samples of 358,177,647 tags, and a

filtered tag count (tags appearing .10 times) of 17,700,128 that

were covered by 564,946,411 matching reads.

Each sequencing lane generated approximately 26108 100 bp

reads. After discarding reads that did not have an exact match to

one of the barcodes, there were approximately 26106 100 bp

reads per sequenced DNA sample. We designated the 26106

100 bp-base reads/DNA sample as one unit of ‘depth index’. To

test the influence of plexity and sequencing depth on GBS data

completeness, we used data from 53 OxT mapping progeny

sequenced in three separate lanes. We split the raw sequencing

data from two lanes in half and added these incrementally to the

un-split lane, which contained a lower number of reads. This

provided five different sequencing depths with mixed levels of

plexity, from which we computed average depth indices of 0.58,

0.95, 1.33, 1.85, and 2.37. For example, the depth index of 0.58

means there were, on average, 0.58626106 = 1.166106 reads/

sample for that experiment. The exact read depth for individual

samples varied because of sample quality and/or variations in

barcode efficiencies. The UNEAK GBS pipeline was run on these

five data subsets and SNPs were filtered at four levels of

completeness (25%, 50%, 75%, and 90%). The results (Figure 1)

showed that an increasing number of SNPs were called as the

depth index was increased at all four completeness levels. The

response to sequencing depth appears to be linear within the range

tested. One of the sequencing runs, added at the second and third

levels, had a higher variation in read depth among samples, which

explains the lower slope at these levels and the fact that almost no

SNPs had a completeness of 90%.
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Population size vs. number of GBS SNPs
We examined random subsets of 366 diverse oat varieties,

including the IOI set and 26 additional winter oat varieties, to

determine how sample size would affect the number of GBS SNPs

called at differing levels of completeness. Sample size was varied

between 10 and 360 at increments of 10, with two randomly

chosen subsets as replicates for each sample size. These data were

filtered at a maximum heterozygosity of 10%, MAF of 5%, and

minimum completeness of 25%, 50%, 75%, or 90%. At each

sample size, the number of SNPs passing these filters was counted.

At a low threshold for completeness (25%), the number of SNPs

increased with sample size, plateauing at approximately 50,000

SNPs once 250 of the 360 oat lines had been included (Figure 2).

At higher thresholds for completeness (50%, 75%, and 90%), the

number of SNPs plateaued at approximately 20,000, 10,000, and

5,000 SNPs, respectively. These plateaus occurred at increasingly

smaller sample sizes, and the number of SNPs appeared to

decrease slightly as sample size increased beyond the initial

plateau.

Figure 1. Number of GBS loci vs. sequencing depth. Number of GBS SNP loci called in 53 OxT mapping progeny at increasing sequencing
depth, filtered at four levels of completeness (25%, 50%, 75%, and 90%). Other filtering parameters were constant, with heterozygosity #10% and
minor allele frequency $30%. A sequencing depth index of 1 represents the average read depth that would be achieved with 95 samples multiplexed
in a standard Illumina sequencing run giving approximately 26108 short reads. Thus, an index of 2 would be equivalent to twice this number of reads
or half of this plexity.
doi:10.1371/journal.pone.0102448.g001
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Multi-allelic SNPs
Although multi-allelic loci were not specifically identified by

either of the two GBS pipelines employed in this work, it was

apparent that the population-based method would frequently call

separate pairs of bi-allelic SNPs at the same site, providing

evidence for third and, occasionally, fourth alleles. We used this

result to make an approximate estimate of the frequency at which

multi-allelic SNPs can be identified from existing pipelines. Of the

355,731 unique bi-allelic SNPs from all oat projects called using

both pipelines, there were 343 sets of tri-nucleotide SNPs (i.e., two

bi-allelic SNPs having identical context sequence except for a third

allele at the SNP position), and 21 sets of tetra-nucleotide SNPs

(i.e. two bi-allelic SNPs having identical context sequence except

for the SNP position). This analysis was not expected to give

comprehensive access to all multi-allelic SNPs, since most of the

multi-allelic SNPs would have been filtered out during SNP

calling. However, this result suggests that tri- and tetra-nucleotide

SNPs are extremely rare, which is expected when SNPs arise

primarily as random neutral mutations.

Integration of GBS SNPs with an existing genetic
consensus map

45,117 GBS loci, filtered across six bi-parental RIL populations,

were placed on the oat consensus map of Oliver et al. [4] based on

simple counts of recombination fractions. Starting from the initial

consensus map, each additional population provided from 2,535

(KxO) to 30,369 (OxT) more loci (Figure S16). As more

populations were used for marker placement, fewer new markers

Figure 2. Number of GBS loci vs. sample size. Number of GBS loci called in samples of size N from a set of 360 diverse oat lines filtered at four
levels of completeness (25%, 50%, 75%, and 90%) is shown. Other filtering parameters were constant, with heterozygosity $10% and MAF $5%.
doi:10.1371/journal.pone.0102448.g002
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were added to the map, but the number of new markers was

always proportional to the number of markers available from the

source population; e.g., there were always more new loci from

OxT (21,894–30,369) than KxO (1,065–2,535) (Figure S16). The

complete report for this map is available as a supplementary

HTML file in Text S2 (or online at: http://ahoy.aowc.ca/

html_link_gbs_text_S2.html). The report format is described in

Figure S1. Each individual marker on this HTML map is linked to

a separate, detailed report that shows a complete matrix of

recombination fractions between the reported marker and the

neighbouring loci from the consensus map, as well as other placed

markers across all populations.

To investigate the approximate global distribution of GBS loci

relative to the SNP consensus map, we divided the map into bins

of 5 cM intervals and produced a density histogram which showed

the number of placed GBS loci in each bin along the genome

(Figure 3). Some bins contained no markers, while some contained

a much larger number of markers. In general, GBS loci tended to

cluster in the same locations as array-based SNPs. Some clusters

probably reflect centromeres, where suppressed recombination

causes genetic clustering. However, some chromosomes contained

multiple regions of clustering, especially 3C, 4C, 5C, 16A, 19A,

12D, and 21D. This may be caused in part by cytogenetic

differences among the parents of the mapping populations,

whereby individual maps contain underlying differences in the

structure and order of genetic markers. The consensus map would

have compressed these differences into a single ‘average’ map, but

the underlying differences among populations remain, and placed

markers may appear to cluster at points where the consensus has

averaged these differences.

The inclusion of GBS markers appeared to fill gaps within the

consensus map. For example, 112 marker intervals larger than

5 cM were present on the original consensus map [4], while only

25 are present on the same map once GBS markers are placed,

and the maximum gap size decreased from 26.98 cM to 15.74 cM

(Figure S2). These results do need to be interpreted with caution,

because the interpolated positions of markers with miss-scored

alleles may appear to fill some gaps. An accurate re-interpretation

of the consensus map can only be achieved by a complete

reanalysis and reinterpretation of the component maps. This work

is in progress and will be reported elsewhere together with a

complete report on additional SNP loci. Preliminary results of this

work (unpublished data) indicate that GBS markers fill some gaps,

but that their greatest benefit is to increase the number of loci that

are mapped in multiple populations.

Examination of orthology with other crops
The high density of approximately-placed GBS markers

provides a new opportunity to examine orthologous relationships

between oat and model genomes. The orthology analysis was

performed to determine whether matches of short GBS sequence

to model genomes would be sufficient to identify major regions of

genome co-linearity. Using dot-plots, we explored the locations of

sequence similarity between the oat consensus map and pseudo-

molecule sequence assemblies from Brachypodium distachyon L.

(Bd), rice, and barley (Figures S3 to S6). As in a previous analysis

using only array-based SNPs [4], we observed that Brachypodium
had a greater number of matches and better colinearity with oat

than did rice. Several stretches of colinearity were observed, such

as those on oat 19A (similar to parts of chromosomes Bd1, Bd2,

and rice1) and oat 20D (similar to Bd5 and rice4). In the current

analysis, it is clear that, in regions of collinear sequence-based

matching, both the GBS and other SNPs are contributing similar

information. In some cases, the GBS loci appeared to extend the

regions of colinearity (for an example, see Bd1 and Bd4 in Figure

S3). It was also clear from the higher density of GBS matches to

Brachypodium sequences that a greater number of non-coding

sequences were similar between Brachypodium and oat than

between rice and oat, despite the larger genome of rice. This is

probably because of the closer ancestral relationship between oat

and Brachypodium. Barley showed very poor colinearity with oat,

based on sequence matching to the newly-available ordered

shotgun assembly [25]. We suspect this to be a result of the

incomplete nature of the barley assembly. It was also notable that

many GBS SNPs showed highly repetitive matches to the barley

genome (Figure S5), which were mostly eliminated by removing

GBS loci determined to have multiple matches to other GBS loci

within oat (Figure S6). This suggests that there are many repetitive

elements that are shared between the oat and barley genomes.

GBS SNP annotation
In order to give an approximation of the number and

distribution of genic and intergenic GBS SNPs in oat, we

compared a complete set of 355,731 context tags of GBS SNPs

from all oat projects available at the time of analysis to the

chromosome-based genome assembly and accompanying gene

predictions from Brachypodium (release 2.1; http://www.

brachypodium.org) by BLAST. Of these, 19,656 tags (5.5%)

showed protein matches (BLASTx) with expectation ,0.1, a level

that corresponds approximately to a minimum 60% identity over

the full tag length or 100% identity over half the tag length.

Although there will be oat genes that do not have Brachypodium
orthologues, it is still likely that fewer than 5% of GBS tags are

within transcribed oat genes, because many of the protein

signatures matching Brachypodium will likely represent vestigial

genes in oat. Of the tags with protein matches, 16,712 showed

DNA similarity within the transcribed region at the threshold

expectation of ,0.1. However, we noted that the average

BLASTn expectation corresponding with a BLASTx expectation

of 0.1 was approximately 0.001; therefore, we conducted further

nucleotide matches at this level. This allowed us to identify a total

of 46,370 tags (13% of total) with nucleotide matches in

Brachypodium, among which 30,713 (66% out of matched tags

or 8.6% out of total tags) were in intergenic regions, and 15,657

(34% of matched tags or 4.4% of total tags) inside gene regions, of

which only 300 did not match a protein. Since gene regions in

Brachypodium correspond to approximately 43% of the genome, it

appears that there is some bias toward GBS nucleotide matches

outside of gene regions.

Out of the 46,370 tags matched to Brachypodium sequences,

9,684 were positioned somewhere on the consensus map (cf.
Results/Integration of GBS SNPs with an existing genetic

consensus map). On average, 20.5% of mapped loci were

positioned inside a gene, ranging from 14.2% to 29.08%, which

is a slightly smaller than the proportion in overall tags having

BLAST matches to the Brachypodium genome. The distribution of

Brachypodium orthologous SNPs along the oat genome is similar

to that of the overall oat GBS SNPs (Figure S17 and Figure 3).

Genic and intergenic SNP counts per chromosome and their

genome distribution can be found in Figure S17. While this result

gives an approximation of the proportion and distribution of genic

and intergenic SNPs along the oat genome, care should be taken

in interpreting this result to form a general conclusion about oat,

not just because of the partial coverage of the present consensus

map, but also because of the approximate nature of the

annotations made through the use of orthologues.
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A de novo genetic linkage map using GBS
In the above work, mapping was performed in six populations of

reduced size, primarily to approximate the positions of a large

inventory of GBS loci relative to an oat consensus map. We also

wished to examine the utility of GBS markers for generating a de
novo linkage map in the absence of other marker types, and to

evaluate how well this map could be matched to the current

consensus. For this work, we used the VxL population, composed

of 145 F4:5 RIL families. The GBS loci for map construction were

called using the UNEAK GBS pipeline and filtered at high

stringency (MAF $35%, completeness $90%) at two different

levels of heterozygosity (8% and 13%). The resulting data

contained 858 (heterozygosity $8%) and 1053 (heterozygosity

$13%) GBS loci. From this, a map with 35 linkage groups having

a total length of 1713 cM was constructed. A comparison between

this map and the consensus (Figure S7) showed that 280

(heterozygosity $8%) or 373 (heterozygosity $13%) markers

were present in VxL but not in the six mapping populations used

for consensus map saturation. Most VxL linkage groups corre-

sponded to single consensus chromosomes, and the relative

positioning of loci within groups was approximately linear. Several

sets of VxL linkage groups (e.g., LG07 and LG20) likely represent

single oat chromosomes (in this case, 12D). This suggests that there

is good opportunity to perform comparative mapping of traits that

are identified in new populations using only GBS technology. The

filtering of loci at different levels of heterozygosity provided an

opportunity to observe that certain regions of the VxL genetic map

are more highly heterozygous than others (red dots in Figure S7,

and graphical genotypes in Table S2), as would be expected in an

F4 population. In addition, most of the heterozygous loci were

clustered at what are likely centromeres (Figure 3 and Figure S7),

explained by the fact that low recombination in centromeric

regions has been found to contribute to the retention of residual

heterozygosity [40]. This provides good evidence that heterozy-

gous genotype calls in the GBS pipeline are generally accurate and

genetically consistent.

Use of GBS to evaluate population structure
PCA and model-based clustering were used to examine the

effectiveness of GBS markers to identify population structure in

340 oat lines of global origin. Of these, 41% originated from North

American breeding programs (81 lines from Canada and 59 from

USA) and the remainder originated elsewhere (Table S3). GBS

markers called by the UNEAK pipeline were filtered at $90%

completeness, MAF $5%, and heterozygosity #5%. Of the

filtered SNPs, only those that were placed on the consensus map

(2155 loci) were considered. Because of genetic clustering, a large

number of these SNP loci (1159, or 54%) co-segregated at

identical positions, and 1755 (81%) were within 1 cM intervals

(Figure S8). Since this dependency is also reflected in LD (see next

section), it was likely to distort the Eigenvector/Eigenvalues and to

bias the interpretation of population structure [29]. Therefore, we

applied two levels of LD correction (k10 and k50), in addition to

using an uncorrected analysis (k0) for PCA. At k0, no obvious

reflection point was observed in the scree plot, while we could

distinguish slight two-stage plateaus in k10 and k50, where the

drop of Eigenvalues slowed at approximately PC5 and PC10

(Figure S9). The first ten PC explained 37.6, 32.1, and 31.6

percent of the total variation for k0, k10, and k50, respectively,

whereas 25.0, 21.2, and 20.9 percent of the total variation was

explained by the first four PC (the approximate point of the first

plateau).

Since no obvious groups were separated by the first two PCs,

model-based clustering was performed to explore the grouping of

oat lines based on the first ten PC. The best solutions for k0, k10

and k50 were four, two, and two clusters, although the entropy

plot of k50 could be understood as three clusters (Figure S10). The

clusterings from k0, k10, and k50 were generally in agreement and

reflected the geographic origins of the oat lines, with European

lines tightly clustered together and lines from elsewhere spread out

across the plot (Figures 4 and S11). The possible third cluster in

k50 was positioned between European and North American lines

and was comprised of oat lines from Eastern or Northern Europe,

as well as some North American lines. One set of five lines was

separated by PC4 and this separation is particularly obvious in the

k0 data set (Figure S12). The separation of this cluster seemed to

be related to growth habit (three of the five lines are winter oats,

Figure S12), but because the number of lines was so small, a

definitive conclusion could not be made. Our results showed that

this diversity panel does not show substantial structural stratifica-

tion, and this is in agreement with previous work based on DArT

markers [31].

Linkage disequilibrium analysis
From the original 2155 markers, we retained r2 estimates from

51,850 marker pairs with an average or minimum map distance

less than 30 cM. Plotting these r2 estimates against map distance

(Figure 5, Figure S13, and Table 2) showed that LD decays such

that, at 0.1, conventional r2 is equal to an average distance of

21.5 cM (Hill-Weir model) or 13.6 cM (Sved model), while rv
2 is

equal to 2.8 cM (Hill-Weir model) or 2.5 cM (Sved model). The

fact that rv (corrected for relatedness) is much smaller than r2

(uncorrected) illustrates the necessity of removing the effect of

coancestry to reduce the inflation of r2 estimates, and probably

reflects that the IOI panel contained groups of related lines

originating from the same breeding programs. Estimates of rs
2

(accounting for population structure) did not reduce the bias in r2

as substantially as did the models accounting for coancestry, which

is consistent with earlier observations that this population is not

highly structured. These results suggest that good genome

coverage for GWAS will require a marker spacing of approxi-

mately 2.0 cM (rsv
2 k0, min rf, Sved model) to 2.8 cM (rv

2,

average rf, Hill-Weir model, Table 2). Non-linear model fitting

enabled us to estimate the effective population size required for

GWAS, which varied from 68 to 110 lines, depending on the

choice of r2 estimates and evolution models (Table 2).

Germplasm diagnostics using GBS
We wished to examine how GBS technology could be used to

solve two common diagnostic problems that arise occasionally in

any plant breeding program. The first example involved a

suspected error in the planting of one replication in an oat variety

registration test. The questionable replication could have been

discarded, but it had been grown and harvested at a cost that was

more than double that required for genotyping the unknown

samples, and discarding the replication would jeopardize the

Figure 3. Distribution of GBS loci across the oat genome. Maps of each chromosome (delineated by blue lines and labeled on left) are divided
into 5 cM bins with 0 cM starting at the top. Red bars show numbers of loci detected by two pipelines, green shows those detected only by the
population-filtering pipeline, and violet shows those detected only by the UNEAK pipeline. Numerals inside boxes show total GBS loci by
chromosome. A summary of placed GBS loci by pipeline and by sub-genome is shown.
doi:10.1371/journal.pone.0102448.g003
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statistical power of the experiment. Problems of this nature can

have great economic impact if they delay or improperly influence

the release of improved plant varieties. We filtered a set of 1518

diagnostic GBS loci that were polymorphic among known and

unknown lines from this test. We then applied UPGMA cluster

analysis to the simple allele dissimilarity (d) among samples. The

results (Figure S14) illustrate that each unknown sample could be

paired with one or more known samples. It was then clear that the

source of error was a simple reversal of seed envelopes in one of

the planting trays. The phenotypic data could then be reassigned

to complete the analysis. Although the unknown experimental

units could be unambiguously corrected based on the genetic data,

a few of the distances between samples known to originate from

the same variety (e.g., samples 128 and 232 in Figure S14) were

larger than expected. We expect that this is because the DNA

samples were prepared from a few seeds sampled randomly from

bulks that were harvested by combine from the registration test. If

so, this draws attention to the fact that seed harvested from yield

trials is often impure and should be used with caution in genetic

studies.

The second diagnostic problem was to determine whether an F2

population originated from a true cross or from selfed seed of a

parent. In this case, the progeny appeared very homogeneous and

an error was suspected. However, resources had been invested in

the cross, and it seemed worthwhile to address this issue before

discarding F3 seed. We filtered GBS loci for ten F2 progeny and

the intended male parent of the cross, together with 340 additional

progeny from the IOI diversity panel. The intended female parent

was unavailable, but a maternal grandparent (Leggett) was

available from the IOI set. Filtering at 10% heterozygosity, 10%

MAF, and 90% completeness gave 2205 locus calls. All 2205 loci

were completely homogeneous among the suspected progeny and

the male parent, with the exception of minor variants that

appeared random and fell within a 1% tolerance for scoring error.

A cluster analysis (Figure S15) supported this result. Thus, it was

concluded that these seeds were not from a true cross, and that

they probably represented a harvesting error in the crossing block.

Discussion

Factors that influence the quality and quantity of GBS
SNP calls

The completeness of GBS SNP calls and the number of SNPs

filtered at a given completeness are influenced by several factors,

including: (1) the actual number of genomic fragments produced

by the complexity reduction, (2) the sequencing depth, as

determined by the number of reads and the number of samples

that are multiplexed, and (3) the underlying density of SNPs,

which is related to the diversity and structure of the population

[41]. Although other restriction enzymes can be used for

complexity reduction (e.g., [11,17]), we limited our present

investigation in oat to the PstI-MspI combination which had

previously been optimized for the similar-sized genome of wheat

[12,23]. This method provided suitable results in oat with minor

modifications, and identified tens of thousands of sequence

polymorphisms. Although the results in Figure 1 show a somewhat

linear response in the number of SNPs identified as sequencing

depth increases, the number of SNP calls for all levels of

completeness would eventually plateau at a limit (possibly more

than 100,000) determined by the complexity reduction and the

population. The depth of sequencing required to obtain complete

data for all SNP-containing fragments is currently not practical

nor cost effective, nor is it required to obtain meaningful genetic

data and results. However, we strongly recommend that additional

replicate samples be used for the parents of mapping populations

or other material that is critical to an experiment to achieve

Figure 4. Scatter plots of PC1 vs. PC2. The k10 correction is shown: (A) coloured based on clustering from genotypic data, (B) coloured based on
geographic origins.
doi:10.1371/journal.pone.0102448.g004
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greater sequencing depth for these lines. In addition, there may be

opportunities to produce and analyze reduced complexities

generated using selective bases added to primers of existing

enzyme systems [18]. Use of selective bases may have value for

certain investigations where a more complete and consistent

genotyping is required, and would have the advantage of

providing data at a subset of loci already characterized in the

present work. An example of an application where this might be

useful is the routine diagnosis of variety identity or other diagnostic

applications that do not rely on a high density of genetic markers.

One can also ‘‘complete’’ the missing data points through data

imputation. Various imputation methods have been developed

which can be highly effective for subsequent analyses (reviewed in

[42]). Although most methods require known marker order, often

provided by a reference genome sequence, imputation can also be

applied to unordered markers and could increase the accuracy of

further analyses.

As the number of diverse lines was increased, the number of

GBS loci also increased, but this number plateaued at a relatively

small number of lines. This result is consistent with the notion that

each additional line added an increasing likelihood of identifying

rare alleles, such that an increasing number of loci will meet the

allele frequency threshold. Meanwhile, larger samples may make it

increasingly unlikely that loci will meet filtering criteria and/or

that spurious loci will be included. This is possibly why the plateau

occurs earlier as data are filtered for higher completeness, and

provides a possible explanation for the decrease in SNP number

beyond the plateau (Figure 2). In addition, completeness is

stochastically variable among samples and among loci. Thus, loci

that are included in two diversity subsets are not necessarily those

that are the most complete across the entire panel. This

phenomenon may make it difficult to obtain consistent loci among

different experiments if thresholds for completeness are set too

high. For this reason, we recommend that filtering be performed at

multiple levels, depending on the purpose of the experiment. For

example, the VxL population was filtered at high stringency to

develop an initial de-novo map, then at low stringency to identify

additional GBS loci that mapped across populations.

One of the factors of concern in oat and other polyploid species

is that the analysis of genetic loci may be confounded by

duplicated homoeologous regions. This factor has made it difficult

to discover and apply gene-based SNP loci, and has resulted in

some assays where SNPs must be scored with dominant alleles

[4,43]. Based on the relative scarcity of BLAST matches in related

Figure 5. LD decay plot. r2 estimates were plotted against the average map distance (recombination frequency expressed in cM): (A) relationship
fit using the mutation model (Hill-Weir), (B) relationship fit using the recombination-drift model (Sved). Population structure was estimated using the
k10 correction.
doi:10.1371/journal.pone.0102448.g005

Genotype-By-Sequencing (GBS) in Oat

PLOS ONE | www.plosone.org 11 July 2014 | Volume 9 | Issue 7 | e102448



species, the majority of the GBS loci from the PstI-MspI

complexity reduction appear to be located in non-genic regions.

Furthermore, because the GBS marker calling is based on counts

of specific allele variants, all GBS loci are scored with co-dominant

alleles. For these reasons, and also because of intense filtering to

remove loci with non-diploid inheritance, the GBS method

provides good representation of single genetic loci. This would

also tend to remove SNPs that fall in conserved genic regions, as

these GBS tags would align to all three genomes and the resulting

SNPs would not segregate as single loci. Although heterozygote

calls are more subject to genotyping errors, our results show the

interest of including heterozygous genotypes in certain applica-

tions. In particular, we observed that the overall quality of

heterozygote determination in the VxL F4 population was good,

and that it enabled meaningful characterization of heterozygous

regions in the graphical genotypes (Table S2). However, we have

not thoroughly investigated the use of GBS markers in F2

populations, where it is possible to confuse single loci with

duplicated loci having similar genetic ratios. For this reason, GBS

should be used with caution in F2 mapping populations, unless a

reference genome or an ordered scaffold is available such that

heterozygous regions can be imputed.

Annotation of oat GBS SNPs
We estimated that 5% of oat GBS SNPs were within protein

coding sequences. This estimate should be considered preliminary

because of the current lack of public oat gene sequences. Using an

automated SNP annotation pipeline, Kono et al. [44] estimated

that only 1.3% of a preliminary subsample of 5000 oat GBS SNPs

were genic SNPs. Most of their matches were also based on

Brachypodium. Their estimate may be lower because of sampling

bias and because they used a higher stringency in protein

matching (e,561025). Using the same annotation pipeline, Kono

et al. [44] identified 10.6% of a sample of barley GBS tags as being

genic SNPs. The rate in barley may be substantially higher

because of the greater availability of barley gene sequences.

Methods of bioinformatics analysis and workflow
We used two bioinformatics pipelines to perform SNP calling.

The motivation for using two pipelines was that they were the only

two non-reference-genome GBS pipelines of which we were

aware. While the UNEAK pipeline gave clear, predictable results,

the number of loci passing secondary filtering was low compared

to those called by the population-level pipeline. In addition, as

observed elsewhere [22], the GBS SNPs identified can vary

considerably with different methods. Across all SNPs placed on the

oat consensus map, 43% (19,209 out of 45,117) were called only

by the population-based method, 22% (9997 out of 45,117) were

called only by the UNEAK method, and 36% were called by both

methods (Figure 3). Although the population filtering method

called more SNPs, these SNPs contained a higher redundancy,

and multiple SNPs (linked or unlinked) were sometimes assigned to

the same context sequence in the report (data not shown). This is a

result of calling SNPs in tags that belong to complex gene families

and/or in context sequences of haplotypes that contain multiple

SNPs. Such loci are usually ignored by the UNEAK pipeline,

which reports only tags with single SNPs. However, in some cases,

the direct use of SNPs from the population-filtering report would

prevent the correct development of secondary allele assays, if no

detailed validation of the assembly was performed to generate

unambiguous diagnostic probes for correct SNP interrogation. For

these reasons, we performed some of this work using only the

UNEAK pipeline. Nevertheless, it was apparent that a much

greater number of SNPs were called by the population-filtering
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method, and these additional SNPs may provide important

information which would otherwise be discarded. Until bioinfor-

matics methods can be further refined, we recommend using a

combined data set composed of SNPs called by both pipelines. We

also recommend the preferential use of SNPs called by the

UNEAK pipeline in the development of secondary assays, and the

use of appropriate statistical methods to reduce the influence of

marker redundancy in subsequent applications such as association

mapping.

Saturation of a consensus linkage map with GBS loci
High density maps are required for the precise mapping of

important agronomic traits to be targeted in marker-assisted

breeding. The high-throughput GBS technology enabled the

placement of 45,117 GBS loci identified across six bi-parental

mapping populations on the oat consensus map [4]. This high-

density map showed marker clustering along chromosomes,

similar to a barley map saturated with GBS markers [12]. Since

many of these clusters represent centromeres, GBS loci are likely

to be more evenly distributed along the physical map. However,

gaps of up to 15 cM were still observed in the high-density map.

Some gaps may result from lack of polymorphism in the mapping

populations, which can be further improved by integrating other

mapping populations. Gaps could also be filled in by using GBS

libraries produced using different restriction enzymes, as shown in

wheat [17]. Gaps and multiple clusters may also be related to the

construction of the initial consensus map and it is possible that the

consensus map will be improved once GBS markers are fully

integrated with additional gene-based SNP loci.

Utility of GBS markers for genetic analysis in oat
We have investigated different GBS applications relevant to oat

breeding. In addition to saturating an existing consensus map,

GBS markers were suitable for building a de-novo linkage map

with good genome coverage that revealed colinearity with the

consensus. These results were successful because GBS provided a

large number of markers that were polymorphic in multiple

populations. This will facilitate comparative mapping to validate

and refine the location of target alleles in diverse genetic

backgrounds, and will increase the options available for molecular

breeding.

Analyses of diverse germplasm showed weak population

structure in our sample. This weak structure was observed

previously when DArT markers were used across a larger oat

diversity panel that included the IOI set used in this study [31].

While rice, barley, and maize are known for having strong

population structure [45–47], oat, despite having four recogniz-

able types (naked, covered, spring, and winter), has not shown

obvious population structure within the samples analysed to date.

Although the majority of lines in the IOI set are the spring type

(318 out of 340) and covered-seeded (312 out of 340), the

remaining naked or winter lines did not form distinct sub-clusters.

Instead, the scatterplot tended to reflect the geographic locations

of breeding programs and (by inference) the degree of coancestry

among lines. A possible explanation for these results could be that,

while oat breeders tend to make most crosses among parents that

are locally adapted, they have also exchanged elite germplasm

with some regularity. The relatively small effective population size

compared to the number of IOI lines also supports this

interpretation.

The use of GWAS is widely considered to be an attractive

alternative to the use of structured (e.g., bi-parental) populations

for identifying adaptive alleles for use in molecular breeding.

However, effective GWAS requires prior knowledge of LD decay

and an awareness of the population under investigation. Our

results highlight that there is a strong gradient of coancestry that

needs to be accounted for through the use of an appropriate

model, but that other sources of population structure are not

important in the population investigated. Although GBS appears

to provide a much higher density of markers than required for

GWAS, it is possible that target loci are within gaps that do not

contain a suitable marker density. For this reason, it may be useful

to test additional enzyme combinations for GBS for use in a large

association panel when a large investment has been made in

phenotyping.

Conclusion

The choice of marker technologies is critical to the success and

future application of genetic and genomic research. GBS is

attractive because it provides thorough genome coverage and can

be applied at low cost with or without a reference genome

sequence. However, GBS requires intense bioinformatic analysis,

an awareness of the need to filter data, and a tolerance for

incomplete data. In this work, we have shown that GBS is an

effective method to discover and apply SNPs in the large and

complex oat genome, and that GBS integrates and compares

favourably with an established SNP technology. The resulting data

have provided whole-genome coverage at a density that enables

detailed analysis of genetic diversity and high power to detect

specific genetic variants.

Our overall conclusion and recommendation is that GBS be

used as a cost-effective primary tool in any application similar to

those that we have explored in oat. Other applications of GBS in

oat, including QTL analysis, genomic selection, and the ordering

of genome sequence scaffolds, remain to be fully tested, but are

expected to be successful based on indications from this work and

from similar use in other species. In future work, we intend to

apply GBS routinely to genotype and select among advanced oat

breeding lines. As a side benefit to improved selection, we hope to

provide new information about the sources and locations of alleles

for better adaptation in oat, and to integrate this information with

the existing genomic knowledge for oat.

Supporting Information

Figure S1 HTML map format. Instructions for using the

HTML-formatted map. The map can be found locally in Text S2

as ‘‘HTML_Local_text_S2.html’’ or online at: http://ahoy.aowc.

ca/html_link_gbs_text_s2.html.

(PDF)

Figure S2 Distribution of map gaps in the original and
updated oat consensus maps. Empty bars show the

distribution of map gaps in the first oat consensus map (Oliver et
al., 2013); solid bars show the distribution of map gaps in the

consensus map with the GBS markers placed on it (this study).

Only gaps larger than 5 cM are shown.

(TIF)

Figure S3 Orthology between oat and Brachypodium
distachyon. Each dot represents the position of a sequence

match (BLASTn, E,10-12) between the oat consensus map (blue

dots for GBS loci, red dots for array-based SNPs) and the

assembled Brachypodium distachyon (Bd) pseudomolecule (release

2.1; http://www.brachypodium.org).

(TIF)

Figure S4 Orthology between oat and rice. Each dot

represents the position of a sequence match (BLASTn, E,10212)
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between the oat consensus map (blue dots for GBS loci, red dots

for array-based SNPs) and the genome sequence of rice (Oryza
sativa L., release 6.1 from http://rice.plantbiology.msu.edu).

(TIF)

Figure S5 Orthology between oat and barley. Each dot

represents the position of a sequence match (BLASTn, E,10212)

between the oat consensus map (blue dots for GBS loci, red dots

for array-based SNPs) and barley (Hordeum vulgare L., cv.
Morex, release 2.0 from ftp://ftp.ensemblgenomes.org/pub/

plants/release-20/fasta/hordeum_vulgare/dna/ non repeat-

masked versions). Barley pseudomolecules are assembled accord-

ing to chromosome arm (long (2HL to 7HL) or short (2HS to

7HS)), except for chromosome 1H.

(TIF)

Figure S6 Orthology between oat and barley (multiple
matches removed). Each dot represents the position of a

sequence match (BLASTn, E,10212) between the oat consensus map

(blue dots for GBS loci, red dots for array-based SNPs) and barley

(Hordeum vulgare L., cv. Morex, release 2.0 from ftp://ftp.

ensemblgenomes.org/pub/plants/release-20/fasta/hordeum_vulgare/

dna/ non repeat-masked versions). A subset of matches from Figure

S5 is shown: oat sequences that matched other Hv sequences more

than 6 times at the same BLASTn expectation have been removed.

(TIF)

Figure S7 Comparison between the VxL map and the
consensus map. Each dot represents a marker shared by the

two maps. Red dots highlight markers of higher heterozygosity

(between 8 and 13%).

(TIF)

Figure S8 Distribution of distances between adjacent
markers used for LD analysis. Markers were first sorted

according to map position, then the distances were calculated as

Position m minus Position m-1. For the first marker of each

chromosome, the interval was calculated as the difference between

its position and the position of the second marker.

(TIFF)

Figure S9 Scree plots of principal components of IOI
genotypic data. The first 20 components at three levels of LD

correction were used to draw the plots: k0 (without correction),

k10 (using 10 adjacent markers for LD adjustment), and k50 (using

50 adjacent markers for LD adjustment). No obvious ‘‘elbows’’

were observed but there was a two-stage decay: at PC5 and at

PC10.

(TIF)

Figure S10 IOI population structure scatter plot (PC1
vs. PC2) based on genetic clustering. Three levels of LD

correction are shown: k0 (A), k10 (B), and k50 (C and D).

(TIF)

Figure S11 IOI population structure scatter plot (PC1
vs. PC2) coloured based on the geographical origins of
the lines. Three levels of LD correction are shown: k0 (A), k10

(B), and k50 (C).

(TIFF)

Figure S12 IOI population structure scatter plot (PC3
vs. PC4) coloured based on genetic clustering (left) or
plant habitat (right). Three levels of LD correction are shown:

k0 (up), k10 (middle), and k50 (bottom).

(TIFF)

Figure S13 LD decay plot. r2 estimates were plotted against

both minimum and average map distance (recombination

frequency expressed in cM): (A) relationship fit using the mutation

model (Hill-Weir), (B) relationship fit using the recombination-drift

model (Sved).

(TIF)

Figure S14 Using GBS markers to resolve an issue in a
field experiment. UPGMA cluster analysis of simple allele-

matching metric (d) based on 1518 GBS loci with heterozygosity

,8%, MAF .20%, and completeness .95%. This evidence was

used to correct a planting error in a field experiment. The samples

in one replication (red samples) were out of order compared to

those in a second, correct replication (green samples), and a set of

known controls (blue samples). Analyzing the sub-clusters in the

above dendrogram and assigning corrected identities (entry

numbers 1–32, above) to the samples in replication 1 made it

obvious that the planting order of the first replication had been

reversed.

(TIF)

Figure S15 Using GBS markers to resolve an issue with
breeding materials. UPGMA cluster analysis of simple allele-

matching metric (d) based on 2205 GBS loci with .90%

completeness. GBS calls were made across samples from 343

diverse oat varieties plus ten putative F2 segregants (green) from a

putative cross between SA060123 (red) and a progeny of Leggett

(blue). Eight closely related oat cultivars are also shown in this

partial cluster dendrogram. Of the 2205 loci, only 131 (6%)

showed any variation among the ten progeny plus SA060123, and

this variation was within the expectations of heterozygous miscalls.

This evidence was used to conclude that the ten progeny were

actually from selfed seed of SA060123 rather than true segregants

from a hybrid.

(TIF)

Figure S16 Effect of adding populations on the number
of markers placed on the oat consensus map. Using the

consensus map [4] as a framework and starting with a different

population each time, markers from the six populations were

placed sequentially in all possible combinations (C6
k , k = 1 to 6).

The number of additional markers contributed by the final map at

each step is represented by different colours and shapes. The box

represents the range between the first and third quartiles and the

thick horizontal bar represents the median.

(TIFF)

Figure S17 Distribution of annotated GBS markers
across the oat consensus map. Maps of each chromosome

were divided into 5 cM bins and the number of intergenic/genic

markers counted for each bin. Some markers are in the negative

range because they are placed off the beginning of the linkage group.

(PDF)

Table S1 GBS mapping data for the six bi-parental
populations used to update the oat consensus map
(Oliver et al., 2013).

(ZIP)

Table S2 Graphical genotypes of markers comprising
the VxL map.

(XLSX)

Table S3 Information about the lines comprising the
IOI panel.

(XLSX)

Table S4 Raw reads statistics and key file for GBS
pipeline.

(XLSX)
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Text S1 Custom Pascal code for ‘CbyT’.
(TXT)

Text S2 Updated oat consensus map (HTML_Local_
text_S2.html). See Figure S1 for instructions.

(HTML)
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